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Figure 1. Feature extractor. The blue blocks labeled with A,
B, C represent a 3x3 convolutional layer with an output channel
size of A, a stride of B, and a dilation of C. CBAM refers to the
convolutional attention module [8]. The notation [...] indicates
indexing a subset of channels and passing them to the next layer.

1. Details of Model Design

In this section, we strive to provide a detailed description
of the key components and operations in our model de-
sign, with a particular focus on the feature extractor and the
global matcher. These elements are critical to the overall
architecture and performance of our model.

1.1. Feature Extractor

As depicted in Fig. 1, our feature extractor utilizes a U-
Net architecture [5]. In the downsampling branch, half-
resolution features are first extracted using several convo-
lutional layers (shown in blue). These features are then pro-
cessed by a sequence of blocks, each of which first enhances
the features via dilated convolutions [10] without increas-
ing the number of channels. This is followed by downsam-
pling, accompanied by an increase in channel width, and
further refinement through a Convolutional Block Attention
Module (CBAM) [8] augmented with depthwise separable
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Figure 2. Global matcher. x denotes matrix multiplication.
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convolutions [2] to to efficiently capture long-range context.
Note that, each block selects the first ¢; channels of its input
feature for processing. After three such blocks, a hierarchi-
cal feature pyramid is constructed.

In the upsampling branch, multi-scale features are aggre-
gated using fusion blocks (shown in red). Each fusion block
integrates low-resolution and high-resolution inputs by con-
catenating the upsampled low-resolution feature with the
corresponding high-resolution feature. The concatenated
representation is then refined through element-wise multi-
plication of two distinct feature mappings, effectively high-
lighting salient information. Finally, a convolutional layer
compresses the refined feature to the target output dimen-
sion C,.

The final output of the feature extractor is a feature
pyramid comprising 384-dimensional features at 1/16 res-
olution, 160-dimensional features at 1/8 resolution, and
128-dimensional features at 1/4 resolution. The 384-
dimensional feature map is further split into overlapping
224-dimensional and 192-dimensional components. The
224-dimensional features at 1/16 resolution are used for
global matching, while the 192-, 160-, and 128-dimensional
features at 1/16, 1/8, and 1/4 resolutions, respectively, are
employed for refinement.

1.2. Global Matcher

As depicted in Fig. 2, given two input feature sets
and F'B corresponding to images I* and IZ, we first ap-



Table 1. Comparison on computational cost at a resolution of
672x672. Note that, the test pipeline is different from the one
used camera in pose estimation.

Consumption  ArgMatch RoMa DKM

Feature Extractor

Time (ms) 135 540 136

Mem. (G) 0.61 3.15 0.62

#Para (M) 7.48 315 25.6
Global Matcher

Time (ms) 24 51 41

#Para (M) 12.6 67.2 124

ply cross-attention [6, 7, 9] to enable inter-image inter-
action and enhance the similarity between corresponding
features. We then compute the global correlation volume
P € RNV *N” pased on the enhanced features, where N4
and N denote the number of pixels at 1/16 resolution in
I4 and IZ, respectively.

Meanwhile, we map the grid coordinates of image I”
into a positional embedding PE € RY ”xC_ The final
match embedding is then obtained as:

MFE = softmax. . (P)PE (1

Then the original feature F“, the enhanced F’4, and the
embedding of matches are concatenated and compressed.
A self-attention module is subsequently applied to refine the
global matches. Finally, the global match embeddings are
decoded using lightweight convolutions.

1.3. Computational Cost of Feature Extractor and
Global Matcher

As shown in Table 1, our feature extractor and global
matcher are most efficient. Specifically, RoMa [3] incor-
porates a fundamental model, DINOv2 [1], as a part of
feature extractor significantly increasing computational bur-
dens. Additionally, while DKM’s feature extractor, based
on ResNet50 [4], appears efficient, it generates up to 512-
dimensional features for refinement, further adding to the
computational load. For the global matcher, both DKM and
RoMa utilize Gaussian-Process-based regressor as the core
of their decoders, resulting in a time complexity of O(n?).
In contrast, our approach achieves a time complexity of
O(n?), making it significantly more efficient, especially at
higher resolutions.

The strong performance of ArgMatch shown in the paper
demonstrates that computational burdens caused feature ex-
tractor and global matcher can be effectively reduced, when
the refinement pipeline properly guide their training and
fully exploit the information they provide.
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Figure 3. Impact of resolution on MegaDepth.

2. Details of Training

Our training scheme consists of two stages: warm-up and
end-to-end training. During the warm-up stage, the refine-
ment pipeline is excluded, and the learning rate is set to
2e-4. This stage concludes when 90% of points achieve
an error below 1 pixel. The end-to-end training stage runs
for 1,500,000 steps. The learning rate is again initialized
at 2e-4 and is exponentially decayed to le-5 after the first
third of total training steps. A weight decay of 0.01 is ap-
plied, and the gradient norm is clipped to a maximum of
0.01 in both stages. We also accumulate gradients over 4
steps to stabilize optimization. Additionally, we propose
mixed-resolution training, where one step at 640 x 480 and
one step at 672 x 672 are inserted every 20 training steps to
enhance robustness across varying input scales.

3. More Experimental Results

3.1. Impact of Resolution

Image resolution significantly affects both matching accu-
racy and computational efficiency, requiring a trade-off be-
tween the two. As shown in Fig. 3, when scaling the de-
fault resolution of 608 x 800, performance saturates beyond
a scale factor of 0.8. Therefore, we set the default test reso-
lution to 608 x 800, matching the training resolution. While
this choice ensures consistency, it may also indicate mild
overfitting.

3.2. More Visualization

Additional visualization results are presented in Fig. 4.
While our method effectively handles challenging cases
such as repetitive patterns and textureless regions, it ex-
hibits limitations in wide-baseline scenarios, as illustrated
in the last row. This shortcoming may arise from the rela-
tively weak global matching component, which we leave as
a potential direction for future work.
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Figure 4. More visualization for image registration.
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