6. Implementation Details

Implementation Details. Our models are built on the pre-
trained Stable Diffusion V2.1 model [53]. To train camera
intrinsic estimation model, we employ the AdamW optimizer
with a learning rate of 3¢~ and train the model for 30,000
iterations with a total batch size of 196 on a cluster of 8
Nvidia A800 GPUs. For metric depth estimation, we use the
same optimizer and learning rate with a total batch size of
96, and the training process takes approximately 5 days to
converge. For all of our downstream 3D vision tasks, we did
not use the ground truth camera image but instead relied on
intrinsic parameters predicted by our diffusion model.

6.1. Camera intrinsic prediction

We train our model on a diverse range of datasets, ensur-
ing balance by selecting one dataset per batch with equal
probability and sampling from it. Most datasets follow the
setup of Zhu et al. [96], with additional data incorporated to
better leverage the capabilities of stable diffusion. A detailed
description of the datasets is provided in Tab. 6. Notably, our
training set includes more data compared to He et al. [23].
For a fair comparison, we also report our results using the
same training dataset and results is shown in Tab. 8. Regard-
ing the Camera Image, we normalize its values to the range
[—1, 1] by dividing by 7, and instead of force-resizing, we
pad the Camera Image to a resolution of 768 x 768. Un-
like previous works [23, 96] that directly resize images to
a fixed size, we resize the images while preserving their
aspect ratios, padding the remaining areas with zeros. This
approach is necessary because the data we used were col-
lected with various aspect ratios even within a single dataset.
Following the data augmentation strategy applied in [96],
we randomly scale images up to twice their original size
and then crop them back to the original resolution, with the
camera intrinsics adjusted accordingly.

6.2. Metric depth prediction

For metric depth prediction, we do not pad the images. In-
stead, we resize the maximum dimension of the images to
768 while maintaining their aspect ratios. Additionally, we
apply random horizontal flipping and random cropping to
enhance dataset diversity even in one dataset. Inspired by
[15], we incorporate a “scene distribution decoupler” into
our model through text-guided conditioned depth generation.
Specifically, we utilize the CLIP tokenizer and encoder to
encode the terms “indoor geometry” and “outdoor geome-
try” for different environments. Based on this setting, we
treat the metric depth with different scale factor for indoor
and outdoor: s = {sj,, Sou}> and the depth label become
ds = d/s; with s; € s to fit the output of the training VAE
decoder.

Table 6. Datasets List for camera calibration. List of the training
and testing datasets: number of images, scene type, and method of
calibration. SfM: Structure-from-Motion.

Dataset \ Images Scene Intrinsic
NuScenes [7] 28k Outdoor  Calibrated
KITTI[11] 18 k Outdoor  Calibrated
CityScapes [11] 23k Outdoor  Calibrated
NYUv2 [44] 6k Indoor Calibrated
E SUN3D [78] 33k Indoor Calibrated
&  ARKitScenes [3] 48k Indoor Calibrated
E  Objectron [1] 33k Indoor StM
5 MVImgNet [86] 27k Indoor SfM
Hypersim [52] 54k Indoor Synthetic
Virtual KITTI [6] 20k Outdoor Synthetic
Taskonomy [87] 420k Indoor Rendered
TartanAir [74] 305k Mix Synthetic
« Waymo [67] 800 Outdoor  Calibrated
@#  RGBD [65] 160 Indoor  Pre-defined
%ﬂ ScanNet [13], 800 Indoor Calibrated
?, MVS [16] 132 Outdoor  Pre-defined
B Sceneslil [10] 256 Mixed Pre-defined

Table 7. Datasets List for Metric Depth estimation. List of the
training and testing datasets for metric depth estimation: number
of images, scene type, and method of Acquisition.

Dataset ‘ Images Scene Acquisition
Hypersim [52] 54k Indoor Synthetic
% Virtual KITTI [6] 20k Outdoor Synthetic
(fn Taskonomy [87] 40M Indoor RGB-D
E TartanAir [74] 305k Mix Synthetic
'5 Argoverse2 [76] 403k Outdoor LiDAR
= Waymo [68] 223k Outdoor LiDAR
Self-rendered 10k Outdoor Synthetic
Scannet [13] 83k Indoor RGBD
Diode [70] 771 Mix LiDAR
% ETH3D [59] 454 Outdoor RGB-D
& IBims-1 [35] 100 Indoor RGB-D
< NuScenes [7] 3k Outdoor LiDAR
£ NYU [44] 654 Indoor RGB-D
VOID [77] 800 Indoor RGB-D

6.3. More implementation details and discussions
relating Figures and Tables.

Fig. 3: Our Camera Image is image-dependent, unlike other
camera representations that are not. For other methods, lines
can be plotted directly based on different FoV values. In
contrast, we generate the line chart for the Camera Image
using the GSV dataset [2], which includes 20 different types
of cameras.

Tab. 9: We assess the generalization ability across five zero-
shot datasets by aligning the predicted depth d to the ground-
truth depth d with a scale factor s and translation ¢, resulting
in the aligned depth map @ = s x d+t

Tab. 10: The pose estimation is compared against pseudo-



Table 8. Monocular Camera Calibration on Zero-Shot Datasets. We report the calibration errors for both focal length and optical center.
Small means we train our model with same dataset with Zhu et al. [96] and He et al. [23].

Waymo RGBD ScanNet MVS Scenesl1 Average
Method
Ef €p Ef €p Ef €p Ef €p E€f €p Ef €p
Ours-small | 0.138 0.033 | 0.051 0.012 | 0.084 0.023 | 0.080 0.010 | 0.071 0.014 | 0.085 0.017
Ours 0.115 0.036 | 0.041 0.010 | 0.089 0.024 | 0.087 0.008 | 0.061 0.010 | 0.078 0.017
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Figure 8. The overview of metric depth training pipeline. The encoded image and camera image z” and z. are concatenated and sent
to pretrained U-Net. Then we employ single-step diffusion at timestamp 7" to generate depth latent code 24, which is then decoded into

predicted metric depth d.

ground truth generated using COLMAP [58] from 60 images
of a single object, leveraging the ground truth focal length
for improved accuracy. For the reconstruction, we select 20
of these images and compare the pose estimation with and
without intrinsic cues. Note that SE(3) and scale alignment
are applied for the comparison.

Fig. 7 and Fig. 10: From a single input image, we first esti-
mate the camera intrinsics and metric depth map, transform
them into a 3D point cloud using the pinhole camera model,
and calculate the 3D distance between key points.

Fig. 12 & Fig. 13: We take 20 to 25 images with five dif-
ferent focal lengths (same image focal lengths as shown in
Fig. 7) and perform the reconstruction based on these im-
ages. Surrouding are cropped for better visulization. Our
method complements sparse-view reconstruction methods
like Dust3r [73] by providing intrinsic information, rather
than serving as a direct comparison. Dust3r [73] delivers less
accurate intrinsic estimation because it focuses on sparse-
view reconstruction by generating point clouds for image
pairs and performing global alignment to jointly optimize
intrinsic calibrations and poses. This process is less robust
and often converges to a local minimum. In contrast, our
method is specifically designed to recover camera intrinsics.
The results demonstrate that Dust3r achieves more accurate
reconstruction when equipped with our estimated intrinsics.
Procrustes alignment: When pointcloud X is given, the
relative pose can be obtained by Procrustes alignment [41]:

2

R t* = argminz HU(RXz‘Ll +1t)— XZ.LQH ,
o,R,t i

where X2 represents the pointmap of image 1 in the coor-

dinate frame of image 2. Then, a global alignment of the

pointmaps is performed to further refine the pose and obtain

the final aligned pointcloud reconstruction

7. More experimental Results
7.1. Metric Depth

We show more qualitative metric depth prediction in Fig. 9.

7.2. Relative Depth

The quantitative comparison for relative depth is shown in
Tab. 9

7.3. Metrologie

We show more Metrologie results in Fig. 10 compared with
Metric3D [85].

We also present the metrologie results for UniDepth [46]
in Fig. 11. While it shows some limitations in focal estima-
tion, this leads to slightly less accurate visualizations.

7.4. 3D reconstruction

We show more qualitative 3D reconstruction results in
Fig. 12 and 13.

7.5. Mesh Reconstruction

By using our predict metric depth, we can deduce corre-
sponding normal map, and mesh can be reconstructed via
the depth and normal map using BiNI algorithm [8]. We
present the reconstruction result of Pisa tower in Fig. 6, and
we show the reconstructed mesh in Fig. 14. Noting that we
crop all background for better visualization.

7.6. Single view 3D reconstuction

In this section, we present single-view 3D reconstruction
of different camera focal length results using our estimated
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Figure 9. Zero-Shot Metric Depth Estimation Results. We present the predicted metric depth in both outdoor and indoor scenes. Our
method provides more detailed results and recovers accurate metric depths.

camera intrinsics and metric depth map. By applying the
pinhole camera model, we transform the estimated intrinsics
and depth map into a 3D point cloud. We demonstrate the
robustness of our intrinsic estimation and depth prediction
through in-the-wild single-view 3D reconstructions. Qualita-
tive results can be found in Fig 15.

7.7. The Importance of Principal Point Evaluation
and the Assessment of Both Vertical and Hor-
izontal Focal Lengths

In our work, we evaluate the focal length as well as the
principle points. Some previous works [30, 72] focuses
solely on focal length. We prove the indispensability to
evaluate the principal points. We have a significant amount
of data where the principal point does not lie at the image
center in certain datasets, and our model effectively learns
the position of the principal points rather than ignoring them.
To validate this, we conduct an ablation study comparing



Table 9. Quantitative Comparison on 5 Zero-shot Affine-invariant Depth Benchmarks. Despite targeting metric depth, we achieve
performance comparable to SoTA affine-invariant depth methods.

Method NYUv2 KITTI ETH3D ScanNet DIODE-Full
AbsRel | 011 AbsRel| 611 AbsRel] 611 AbsRel| 011 AbsRel| 6171
DiverseDepth [82] 11.7 87.5 19.0 70.4 22.8 69.4 10.9 88.2 37.6 63.1
MiDaS [51] 11.1 88.5 23.6 63.0 18.4 75.2 12.1 84.6 332 71.5
LeReS [83] 9.0 91.6 14.9 78.4 17.1 77.7 9.1 91.7 27.1 76.6
Omnidata v2 [31] 7.4 94.5 14.9 83.5 16.6 77.8 7.5 93.6 33.9 74.2
HDN [90] 6.9 94.8 11.5 86.7 12.1 83.3 8.0 93.9 24.6 78.0
DPT [50] 9.8 90.3 10.0 90.1 7.8 94.6 8.2 934 18.2 75.8
Metric3D [85] 5.8 96.3 5.8 97.0 6.6 96.0 7.4 94.1 224 78.5
DepthAnything [80] 4.3 98.1 7.6 94.7 12.7 88.2 4.2 98.0 27.7 75.9
Marigold [33] 5.5 96.4 9.9 91.6 6.5 96.0 6.4 95.1 30.8 77.3
GeoWizard [15] 5.2 96.6 9.7 92.1 6.4 96.1 6.1 95.3 29.7 79.2
Ours 4.8 97.1 8.5 93.5 7.1 95.3 5.7 96.5 25.6 79.4
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Figure 10. Metrology of in-the-wild scenes. Our method accurately recovers real-world metrics while demonstrating robustness to

variations in focal length.

Table 10. Pose error. We compare the pose error with and
without intrinsic cue.

‘ t'r‘el (m) Trel (o)
w/o. cue 1.17 5.02
w. cue 0.63 2.30

the error when assuming the principal point lies at the image
center (ep) with the error of our estimated principal point
(ép). We show the results on Tab. 11.

Furthermore, not all datasets have f, = f, (e.g.,
CityScapes dataset [11] with f, = 2268.36 and f, =
2225.54). And our method is inherently capable of solv-
ing for both f, and f, and we take this into account to

Table 11. Principal points error We compare the error of principle
point estimation when assuming principal point lies at the image
center with the error of our estimated principal point.

NuScenes KITTI CityScapes NYUv2
e 0.051 0.021 0.055 0.050
€ 0.007 0.014 0.011 0.009

ensure more robust estimation and support future broader
applications and datasets such as Diode [70].

7.8. The Importance of camera image in metric
depth estimation.

The camera image (intrinsic information) is essential for ro-
bust and accurate metric depth estimation. We present the &1
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Figure 11. Metrology of in-the-wild scenes for UniDepth.
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Figure 12. Sparse View 3D Reconstruction with Intrinsic Cues. We captured images with various focal lengths and present the
reconstruction results. With intrinsic cues, our method achieves more accurate and better-aligned reconstructions.

results on three additional datasets in Tab.12, complementing
the findings in Tab.5.

Table 12. Ablation study on the effectiveness of camera images for
metric depth estimation.

ibims Diode indoor Diode outdoor

w. cam img 88.7 50.1 41.0
w.o camimg  82.6 35.0 25.2

As shown, the absence of the camera image leads to a
significant performance drop.

7.9. Test-time ensembling

To reduce the stochasticity of the process, we aggregate five
predicted camera images by taking their mean. This signifi-
cantly minimizes the randomness of the diffusion model, as
evidenced by the small standard deviation in Tab. 13.

Without the aggregation, the standard deviation is some-
times not negligible, as presented in Tab. 14.
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Figure 13. Sparse view 3D reconstruction with intrinsic cue. We captured images at different focal lengths and present the reconstruction
results. With intrinsic cues, the reconstruction is more accurate and better aligned.

a). RGB b). Predicted Metric Depth c). Reconstructed mesh

Figure 14. The reconstructed mesh using our predicted intrinsics and metric depth.

Table 13. Standard Deviation of estimated intrinsics after ensembling.
Waymo RGBD ScanNet MYVS Scenesl11 Average

er 0.115+0.008 0.041 £0.002 0.089 £0.002 0.087+0.006 0.061 +£0.006 0.078 £ 0.006
ey 0.036 £0.001 0.010+0.000 0.024 +0.000 0.008 +0.000 0.010+£0.001 0.017 +£ 0.001

Table 14. Standard Deviation of estimated intrinsics without ensembling.
Waymo RGBD ScanNet MVS Scenes11 Average

ey 0.115+0.035 0.041 £0.010 0.089+£0.024 0.087+£0.008 0.061 +£0.009 0.078 £0.017
e, 0.036+0.012 0.010£0.001 0.024 £0.001 0.008+£0.001 0.010+0.001 0.017 £ 0.001
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Figure 15. The reconstructed pointcloud from images with different camera focal length using our predicted instrinc and metric
depth.
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