MamTiff-CAD: Multi-Scale Latent Diffusion with Mamba+ for Complex
Parametric Sequence

Supplementary Material

1. ABC-256 Dataset

We use the model links from the ABC [15] dataset to extract
commands from the CSG representations of CAD models
via the Onshape API [31] and FeatureScript, and convert
them into parameterized sequences. During the filtering
process, we retain only models with complete design oper-
ations and discard those with only sketching and extrusion
operations, ensuring that the final command sequences have
lengths ranging from 60 to 256. We conducted a statistical
analysis of the CAD command sequence lengths (see Fig-
ure 7), which details the distribution of command sequence
lengths in the training data. Notably, our dataset, with se-
quence lengths of 60-256, is currently the longest available
CAD command sequence dataset.

w

Count (x10°2)

~

Eb 7b 8‘0 9‘0 160 liO 150 130 1110 1%0 1%0 1"/0 léO 1&0 260 Ziﬂ 2%0 2;0 21'30 2%0
Sequence Length
Figure 7. Distribution of CAD command sequence lengths in the
ABC-256 dataset.

2. Parameterization Details

Figure 8 illustrates the complete command parameter list
pbi = [CL’, Y, @, f7 Ty 97 ¢v Ys Pzs Pys Pz, S, €1, €2, bv ’LL} € Rlﬁs
which describes the geometric information of each com-
mand in a CAD model. To ensure bounded values, each
CAD model is first scaled into a 2 x 2 X 2 cube (with-
out translation), which confines the sketch plane origin
(pz, Py, p-) and extrusion distances (e, ez) to [—1, 1], the
sketch profile scale s to [0,2], and the plane directions
(0,6,7) to [—m,m]. Moreover, sketch profiles are nor-
malized to a unit square with the starting point fixed at
(0.5,0.5), ensuring that the curve endpoint (x, y) and circle
radius 7 lie in [0, 1], and the arc sweep angle « in [0, 27].
All continuous parameters are discretized into 256 levels
using 8-bit integers, while discrete parameters remain un-

<SOL>: () Start
R X,y : center

L o o
(Circle) 1 s radius (Line) x,y : line end — point R l

Extrude

Sketch = =
6,9,y : sketch plane orientation

x,y : arc end — point Px: Py, Pz ¢ Sketch plane origin
E
A : swee: e
(ar) a : sweep angle (Extrude)

f:counter — clockwise flag

s : scale of associated sketch profile
extrude distances toward both sides
b : boolean type,
<EOS>: 0 End

u : extrude type

Figure 8. CAD commands and their parameters. (SOL) indicates
the start of a loop, (EOS) indicates the end of the entire sequence.

changed. In a CAD model, sketch commands (initiated by
(SOL)) and extrusion commands alternate; the former de-
fine 2D closed profiles, and the latter extrude these profiles
to form 3D solids with specified Boolean operations. Each
command is represented as a 16 x 1 vector (unused entries
set to —1), and the sequence length is fixed at N, = 256
(padded with (EOS)). This parameterization is similar to
that in DeepCAD[42].

3. Model Architecture and Training Details

Autoencoder. The encoder is composed of four Mamba+
blocks. The state-space model has a feature dimension
of 256, a convolution kernel size of 4, and an attention
head dimension of 32. The decoder consists of four Trans-
former blocks, each containing 8 attention heads and a feed-
forward network with a dimension of 1024. All modules
employ standard layer normalization and a dropout rate of
0.1. The encoder compresses the input sequence into a la-
tent space of dimension 64. At the final stage, the decoder
uses two independent linear mappings to predict the com-
mand type and the command parameters. The command
type prediction produces an output with dimensions 256 by
6 while the command parameter prediction yields an output
with dimensions 256 by 4096, which is reshaped into a ma-
trix of size 16 by 256. Training uses the AdamW optimizer
with a weight decay set to le-4, an initial learning rate of
le-3, and 2000 warmup steps. The batch size is 32 and the
model is trained for 300 epochs with gradient clipping at a
threshold of 1.0.

MST-Diffusion Generator. The diffusion generator adopts
a linear diffusion strategy with 1000 steps. The model is
trained for 200000 iterations with a batch size of 64. At

each step the model predicts noise using mean squared er-
ror loss and is optimized by the Adam optimizer with a beta
one value of 0.9. The initial learning rate is set to 2e-4 and
the learning rate decays after 100000 iterations with a decay
factor of 0.1. The diffusion model configuration is consis-
tent with the autoencoder, with a latent vector dimension of
64, a sequence length of 256, an embedding dimension of
512, 6 Transformer layers, 8 attention heads, and a dropout
rate of 0.1.

4. The Algorithm of Mamba+

As shown in Figure 3, the autoencoder architecture incor-
porates Mamba+ blocks, which utilizes a dual-branch struc-
ture to balance local feature extraction and long-range de-
pendency modeling. The input embedding sequence F, €
REXWXD s first decomposed by a linear projection into
two branches: a feature transformation branch (bl) and a
gating branch (b2). This process produces the main-path
feature x and the gating signal z, respectively. In branch
bl, a one-dimensional convolution followed by a SiLU ac-
tivation enhances local features, yielding =’. Based on z’,
the state-space module parameters B and C, as well as the
discretization factor A, are computed. In conjunction with
a learnable parameter A, the discretization process gener-
ates A and B, which are then fed into the state-space model
(SSM) to compute hggni. Meanwhile, branch b2 applies the
Sigmoid function to generate the gating signal Gys; its com-
plement, Gy = 1—Ghg, acts as a forget gate over the histor-
ical feature 2’ to produce the adjusted feature . Finally,
the output is obtained by fusing z”" with hggy and applying
a linear projection to produce E,, thereby completing the
multi-level encoding of the input command sequence. The
pseudocode for the Mamba+ algorithm is presented in the
following table:

Algorithm: Mamba+ Block Implementation

Input: Embedded command sequence E,. : (B, W, D)
Output: Encoded features £, : (B, W, D)

x < Linear”(E,) // Feature branch (b1)
z < Linear*(E,) // Gating branch (b2)
z' + SiLU(ConvlD(z)) // Local enhancement
A + Parameter? (Exn)
B « Linear? ('), C « Linear® (z')
A « log(1 + exp(Linear® (z'))) + Parameter™
A, B < discretize(A, A, B) // Discretization
hssm + SSM(A, B,C)(z') // State-space computation
Gpo = 0(2), G§ < 1 —Gpo // Forget gate
z'"" < Gy -’ // Historical feature retention
hou < " + hssm // Feature integration
E, + Linear? (hout)
return £

PR N R R

—_— om0
Ly -

5. Detailed Diffusion Model Architecture

In this work, we employ a diffusion model guided by a
multi-scale Transformer to predict the noise at each dif-
fusion timestep. The model accepts a noisy latent vari-
able Z, € RNV*T*D and outputs an estimate of the in-
jected noise €. A time-conditioning mechanism maps
each discrete diffusion step ¢ € {1,...,7} to a con-
tinuous embedding 7(¢), which is then processed by an
MLP to produce two sets of scale and shift parame-
ters {&, ¢t wh, &bl witE |, where L is the number
of Transformer layers. In particular, & and ! modulate
the layer-normalized activations, whereas w! adjusts the
strength of the residual connections.

Multi-Scale Transformer. Within each Transformer layer,
we introduce three parallel attention branches to capture lo-
cal, mid-range, and global dependencies. For a position 7 in
the sequence, we define:

Wi(i) ={j[|i—j| <64},
Win(i) = {7 | li — j| < 128}, (11)
W,(i) ={1,2,...,T}.

We then construct a mask M, € RT*7 (forw € {l,m,g})
such that M, (¢,j) = 0if j € W,,(4) and —oo otherwise.
Each attention branch operates on its respective window,
yielding outputs H;, H,,, H;. We then fuse these via a
learnable gating mechanism:

Hegse = Wo o (W, [Hy | Hyn || Hy)) © (Hi | Hy | Hy)]

(12)
where || denotes concatenation, o is the sigmoid function,
© is elementwise multiplication, and W, W, are learnable
parameters.

Sequence-Aware Positional Encoding. To preserve the se-
quential logic of CAD commands, we augment each token
embedding Z € RT*? with a learnable scalar 7. We define:

Sin(%) if j is even,
PR B o = Zyos 0 o —_pos if 7is odd
COS{ 1000 G-1y7a J» 1L J1s0dd.
(13)

Let ¢; denote the [-th Transformer layer (incorporating
multi-scale attention and a feed-forward network). The
model estimates the noise via:

€0 = Wt 0 b, 0+ 0y (PE(Win Z) +7(t)). (14)

Inside each layer, we apply layer normalization and inject
the time-derived parameters {&!, ! w!} to modulate the
computations. Denoting the layer input by X:

1.0

@ Param ACC

0.8

Param ACC
o
o

N
IS

0.2 4

0.0

75 100 125 150 175 200 225 250
Sequence Length

Figure 9. CAD command sequence length and its corresponding
parameter accuracy.

X’ = LayerNorm(X) ® (1+¢}) + o,

Xattn = X +w! © Attention(X'),
s)
XH = LayerNorm(Xattn) @ (1 +€é) + 77[}%,

Xout = Xattn + wlg © FFN(XN)

Forward Diffusion. We apply a linear variance schedule
{B:}: .
B¢ = 0.0001 + 0.0199 T

Zt:\/aZO'f'Vl_atGa (16)
t
Qy = H(l_ﬁs)a

s=1

where € ~ N(0, I). The network is trained to predict € by
minimizing:

£ =Bt 0,c|le - o(Zs,)]?]. an

Sampling Process. Starting from Zr ~ N(0, I), we itera-
tively denoise:

1 1
7, :7(2 Y N Z,t)+ 5 (18
-1 attﬂtma(t) B (18)
where z ~ N(0, I). Here, a; and 3; denote the attenuation
factor and variance at step ¢. This iterative process gradually
removes noise to recover a clean latent Z;, enabling faithful
reconstruction of the CAD command sequences.

6. Failure Cases

Although our model performs very well on the reconstruc-
tion task as shown in Figure 9, maintaining high accuracy

Figure 10. A collection of generated failed CAD models.

on both short and long sequences and achieving parameter
prediction accuracy consistently near 0.99, non-watertight
objects are occasionally generated during the generation
process. Figure 10 presents several failure examples, and
these failures are mainly caused by limitations in the gener-
ator’s process.

ey T e, & e v =

e bV S @
L g iy G >
Ly B B ap g Ly P

3
>
l

0%0

o
'»'
ﬂ'

:;

© & =
= & X
.l.

rated CAD Models

