
MamTiff-CAD: Multi-Scale Latent Diffusion with Mamba+ for Complex
Parametric Sequence

Supplementary Material

1. ABC-256 Dataset
We use the model links from the ABC [15] dataset to extract
commands from the CSG representations of CAD models
via the Onshape API [31] and FeatureScript, and convert
them into parameterized sequences. During the filtering
process, we retain only models with complete design oper-
ations and discard those with only sketching and extrusion
operations, ensuring that the final command sequences have
lengths ranging from 60 to 256. We conducted a statistical
analysis of the CAD command sequence lengths (see Fig-
ure 7), which details the distribution of command sequence
lengths in the training data. Notably, our dataset, with se-
quence lengths of 60–256, is currently the longest available
CAD command sequence dataset.

Figure 7. Distribution of CAD command sequence lengths in the
ABC-256 dataset.

2. Parameterization Details
Figure 8 illustrates the complete command parameter list
pi = [x, y, α, f, r, θ, ϕ, γ, px, py, pz, s, e1, e2, b, u] ∈ R16,
which describes the geometric information of each com-
mand in a CAD model. To ensure bounded values, each
CAD model is first scaled into a 2 × 2 × 2 cube (with-
out translation), which confines the sketch plane origin
(px, py, pz) and extrusion distances (e1, e2) to [−1, 1], the
sketch profile scale s to [0, 2], and the plane directions
(θ, ϕ, γ) to [−π, π]. Moreover, sketch profiles are nor-
malized to a unit square with the starting point fixed at
(0.5, 0.5), ensuring that the curve endpoint (x, y) and circle
radius r lie in [0, 1], and the arc sweep angle α in [0, 2π].
All continuous parameters are discretized into 256 levels
using 8-bit integers, while discrete parameters remain un-

Figure 8. CAD commands and their parameters. ⟨SOL⟩ indicates
the start of a loop, ⟨EOS⟩ indicates the end of the entire sequence.

changed. In a CAD model, sketch commands (initiated by
⟨SOL⟩) and extrusion commands alternate; the former de-
fine 2D closed profiles, and the latter extrude these profiles
to form 3D solids with specified Boolean operations. Each
command is represented as a 16 × 1 vector (unused entries
set to −1), and the sequence length is fixed at Nc = 256
(padded with ⟨EOS⟩). This parameterization is similar to
that in DeepCAD[42].

3. Model Architecture and Training Details
Autoencoder. The encoder is composed of four Mamba+
blocks. The state-space model has a feature dimension
of 256, a convolution kernel size of 4, and an attention
head dimension of 32. The decoder consists of four Trans-
former blocks, each containing 8 attention heads and a feed-
forward network with a dimension of 1024. All modules
employ standard layer normalization and a dropout rate of
0.1. The encoder compresses the input sequence into a la-
tent space of dimension 64. At the final stage, the decoder
uses two independent linear mappings to predict the com-
mand type and the command parameters. The command
type prediction produces an output with dimensions 256 by
6 while the command parameter prediction yields an output
with dimensions 256 by 4096, which is reshaped into a ma-
trix of size 16 by 256. Training uses the AdamW optimizer
with a weight decay set to 1e-4, an initial learning rate of
1e-3, and 2000 warmup steps. The batch size is 32 and the
model is trained for 300 epochs with gradient clipping at a
threshold of 1.0.
MST-Diffusion Generator. The diffusion generator adopts
a linear diffusion strategy with 1000 steps. The model is
trained for 200000 iterations with a batch size of 64. At

each step the model predicts noise using mean squared er-
ror loss and is optimized by the Adam optimizer with a beta
one value of 0.9. The initial learning rate is set to 2e-4 and
the learning rate decays after 100000 iterations with a decay
factor of 0.1. The diffusion model configuration is consis-
tent with the autoencoder, with a latent vector dimension of
64, a sequence length of 256, an embedding dimension of
512, 6 Transformer layers, 8 attention heads, and a dropout
rate of 0.1.

4. The Algorithm of Mamba+

As shown in Figure 3, the autoencoder architecture incor-
porates Mamba+ blocks, which utilizes a dual-branch struc-
ture to balance local feature extraction and long-range de-
pendency modeling. The input embedding sequence Ex ∈
RB×W×D is first decomposed by a linear projection into
two branches: a feature transformation branch (b1) and a
gating branch (b2). This process produces the main-path
feature x and the gating signal z, respectively. In branch
b1, a one-dimensional convolution followed by a SiLU ac-
tivation enhances local features, yielding x′. Based on x′,
the state-space module parameters B and C, as well as the
discretization factor ∆, are computed. In conjunction with
a learnable parameter A, the discretization process gener-
ates Ā and B̄, which are then fed into the state-space model
(SSM) to compute hSSM. Meanwhile, branch b2 applies the
Sigmoid function to generate the gating signalGb2; its com-
plement,Gf = 1−Gb2, acts as a forget gate over the histor-
ical feature x′ to produce the adjusted feature x′′. Finally,
the output is obtained by fusing x′′ with hSSM and applying
a linear projection to produce Ey , thereby completing the
multi-level encoding of the input command sequence. The
pseudocode for the Mamba+ algorithm is presented in the
following table:

Algorithm: Mamba+ Block Implementation

Input: Embedded command sequence Ex : (B,W,D)
Output: Encoded features Ey : (B,W,D)

1: x← Linearx(Ex) // Feature branch (b1)
2: z ← Linearz(Ex) // Gating branch (b2)
3: x′ ← SiLU(Conv1D(x)) // Local enhancement
4: A← ParameterA (E×N)

5: B ← LinearB(x′), C ← LinearC(x′)

6: ∆← log(1 + exp(Linear∆(x′))) + Parameter∆

7: Ā, B̄ ← discretize(∆, A,B) // Discretization
8: hSSM ← SSM(Ā, B̄, C)(x′) // State-space computation
9: Gb2 ← σ(z), Gf ← 1−Gb2 // Forget gate
10: x′′ ← Gf · x′ // Historical feature retention
11: hout ← x′′ + hSSM // Feature integration
12: Ey ← Lineary

′
(hout)

13: return Ey

5. Detailed Diffusion Model Architecture
In this work, we employ a diffusion model guided by a
multi-scale Transformer to predict the noise at each dif-
fusion timestep. The model accepts a noisy latent vari-
able Zt ∈ RN×T×D and outputs an estimate of the in-
jected noise ϵ. A time-conditioning mechanism maps
each discrete diffusion step t ∈ {1, . . . , T} to a con-
tinuous embedding τ(t), which is then processed by an
MLP to produce two sets of scale and shift parame-
ters {ξl1, ψl

1, ω
l
1, ξ

l
2, ψ

l
2, ω

l
2}Ll=1, where L is the number

of Transformer layers. In particular, ξli and ψl
i modulate

the layer-normalized activations, whereas ωl
i adjusts the

strength of the residual connections.
Multi-Scale Transformer. Within each Transformer layer,
we introduce three parallel attention branches to capture lo-
cal, mid-range, and global dependencies. For a position i in
the sequence, we define:

Wl(i) = { j | |i− j| ≤ 64},
Wm(i) = { j | |i− j| ≤ 128},
Wg(i) = { 1, 2, . . . , T}.

(11)

We then construct a mask Mw ∈ RT×T (for w ∈ {l,m, g})
such that Mw(i, j) = 0 if j ∈ Ww(i) and −∞ otherwise.
Each attention branch operates on its respective window,
yielding outputs Hl, Hm, Hg . We then fuse these via a
learnable gating mechanism:

Hfuse =Wo

[
σ
(
Wg[Hl ∥Hm ∥Hg]

)
⊙

(
Hl ∥Hm ∥Hg

)]
,

(12)
where ∥ denotes concatenation, σ is the sigmoid function,
⊙ is elementwise multiplication, and Wg,Wo are learnable
parameters.

Sequence-Aware Positional Encoding. To preserve the se-
quential logic of CAD commands, we augment each token
embedding Z ∈ RT×d with a learnable scalar η. We define:

PE(Z)pos,j = Zpos,j + η×

sin
(

pos
10000 j/d

)
, if j is even,

cos
(

pos
10000 (j−1)/d

)
, if j is odd.

(13)
Let ϕl denote the l-th Transformer layer (incorporating
multi-scale attention and a feed-forward network). The
model estimates the noise via:

ϵθ =Wout ◦ ϕL ◦ · · · ◦ ϕ1
(
PE

(
Win Zt

)
+ τ(t)

)
. (14)

Inside each layer, we apply layer normalization and inject
the time-derived parameters {ξli, ψl

i, ω
l
i} to modulate the

computations. Denoting the layer input by X:

Figure 9. CAD command sequence length and its corresponding
parameter accuracy.

X ′ = LayerNorm(X) ⊙ (1 + ξl1) + ψl
1,

Xattn = X + ωl
1 ⊙ Attention(X ′),

X ′′ = LayerNorm(Xattn) ⊙ (1 + ξl2) + ψl
2,

Xout = Xattn + ωl
2 ⊙ FFN(X ′′).

(15)

Forward Diffusion. We apply a linear variance schedule
{βt}:

βt = 0.0001 + 0.0199
t

T
,

Zt =
√
αt Z0 +

√
1− αt ϵ,

αt =

t∏
s=1

(
1− βs

)
,

(16)

where ϵ ∼ N (0, I). The network is trained to predict ϵ by
minimizing:

L = Et, Z0, ϵ

[
∥ϵ− ϵθ(Zt, t)∥2

]
. (17)

Sampling Process. Starting from ZT ∼ N (0, I), we itera-
tively denoise:

Zt−1 =
1

αt

(
Zt − βt

1√
1− αt

ϵθ(Zt, t)
)
+ βt z, (18)

where z ∼ N (0, I). Here, αt and βt denote the attenuation
factor and variance at step t. This iterative process gradually
removes noise to recover a clean latent Z0, enabling faithful
reconstruction of the CAD command sequences.

6. Failure Cases
Although our model performs very well on the reconstruc-
tion task as shown in Figure 9, maintaining high accuracy

Figure 10. A collection of generated failed CAD models.

on both short and long sequences and achieving parameter
prediction accuracy consistently near 0.99, non-watertight
objects are occasionally generated during the generation
process. Figure 10 presents several failure examples, and
these failures are mainly caused by limitations in the gener-
ator’s process.

Figure 11. Unconditionally Generated CAD Models

