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1. Supplementary Video

We provide a video, “supp_video.mp4,” to better compare
our method with baselines. Our video is organized into
three parts.

The first part presents a comparison between our method
and baselines on the FisheyeNeRF dataset [0] across three
scenes. Vanilla 3DGS [7] completely fails to reconstruct the
scenes because lens distortion is not accounted for. Fisheye-
GS [10] adopts a parametric model, but the peripheral re-
gions produce blurry results, as highlighted by the red box
in the corners. In contrast, our method achieves clean and
sharp reconstructions.

The second part of the video shows reconstruction re-
sults using our method on walk-around captures, includ-
ing both synthetic and real-world scenes. Our approach
achieves sharp and clean renderings upon completing the
reconstruction.

The third part of the video compares visualizations of
our method with a conventional reconstruction pipeline that
either uses narrow-FOV perspective images or undistorted
images from COLMAP [14] as input. Our method success-
fully reconstructs larger regions, particularly for scenes cap-
tured with large 180° cameras. Besides, we render videos
in fisheye views for each scene.

Additionally, we provide “opt_pose.mp4,” which il-
lustrates the camera changes during optimization, and
“fisheye-gs_failure.mp4,” which demonstrates failure cases
of Fisheye-GS [10] in extremely large-FOV settings.

We strongly encourage all reviewers to watch the pro-
vided video for a more comprehensive visual understanding

of our results.

2. Optimization of Camera Parameters

In this section, we first derive the gradients for all camera
parameters during training in Sec. 2.1. We then demon-
strate the effectiveness of the joint optimization of distor-
tion alongside extrinsic and intrinsic parameters in Sec. 2.2.
Finally, we evaluate our camera optimization on synthetic
NeRF [12] scenes with significant noise in Sec. 2.3.

2.1. Derivation of Gradient

We first derive how to compute the gradient for a pinhole
camera and then extend the derivation to account for distor-
tion.

As defined above, the gradient of camera parameters can
be written as:
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For the color term, we first define the input of the spher-
ical harmonics stored by each Gaussian as the view di-
rection. The 3D location of a Gaussian in world coordi-
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For now, we only compute the derivative with respect
to the camera center. However, the gradient can be easily
propagated back since the camera center corresponds to the
translation vector of the inverse of the world-to-camera ma-
trix.

Next, we derive the gradient from the projected 2D
Gaussian position M?D . For simplicity, we integrate the in-
trinsic and extrinsic parameters into a projection matrix P
since we do not yet consider distortion. The projection from
a 3D Gaussian in world coordinates is defined by:
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We apply a projective transformation:

fla,y,2) =2’ =
gla,y,2) =y =
7 =
where
P p—

=

€l € &

ps3

_ PoZ + pay + psz + pro

3T + pryY + P11z + P15

D1+ DpsY + Ppoz + D13

The gradient flow back to intrinsic and extrinsic param-
eters can be easily computed since P = K[R|t].

Finally, we compute the last term. The 2D covariance
2P depends only on the view matrix, so instead of using
P, we use only the view matrix (i.e., the world-to-camera
matrix) V, and the transformed 3D location in camera coor-
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dinates is X, = [2¢, Ye, 2¢] T :
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Then, we project from NDC to screen space to obtain the

2D location 2P = (u,v):

V=

The second term can be represented as:
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We compute the 2D covariance as follows, given known
focal lengths f, and f,:
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Since we only extract the upper three elements of %27,
we do not compute gradients for T5g, 751, and T5o.
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To account for distortion, we decompose the projection
matrix into two separate operations. Following the defini-
tions above, we apply an invertible ResNet in between:

[Z,9, 2,0]" = K homo(z. - homo(Dy (proj(., ye, 2))))-

(16)

For the projection of the Gaussian covariance X, we
compute a new Jacobian matrix J using the distorted X,.:

zc - homo(Dp (proj(zc, Ye, 2c))).  (17)

Both processes are differentiable, allowing us to com-
pute the intermediate Jacobian for Dy to update the invert-
ible ResNet.

[xcu Ye, zc]T =

2.2. Joint Distortion and Pose Optimization

Our approach supports efficient optimization of camera pa-
rameters, either independently (with perspective images) or
in combination, as shown in Fig. 1, with distortion mod-
eling. This ensures that our pipeline remains robust even
when both distortion and camera parameters are inaccurate.

(a) w/o Cameras Optlmlzatlon (b) w/ Cameras Optimization

Figure 1. Camera Parameters Optimization. We initialize noisy
cameras from COLMAP [14]. (a) Modeling fisheye distortion
without optimizing camera parameters, while (b) jointly optimiz-
ing both in a self-calibration manner. Our full model can recover
accurate lens distortion and camera parameters simultaneously.
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Figure 2. Visual comparison of (a) the initial perturbed (s = 0.15)
and GT poses and (b) optimized camera poses in the Lego scene.
The chart demonstrates the different level of perturbations and the
effectiveness of our optimization. Our method successfully recov-
ers accurate camera frames.

To evaluate our model’s ability to jointly optimize
lens distortion and other camera parameters in real-world
scenes, we introduce a setting where both camera extrin-
sics and intrinsics are perturbed in the FisheyeNeRF dataset.
Specifically, we add Gaussian noise with a standard devia-
tion of s = 0.15 to each image’s camera extrinsic and intrin-
sic parameters. Despite this additional noise, our method
successfully recovers the lens distortions while generating
high-quality novel-view synthesis renderings (Fig. 3).

One key observation is that COLMAP [14] can robustly
estimate camera extrinsics but struggles with intrinsic pa-
rameters and distortion. When we enable extrinsic opti-
mization during reconstruction, the camera poses are re-
fined only slightly, indicating that the initial poses are al-
ready quite reliable. Regarding lens distortion, as demon-
strated in Fig. 5 and discussed in Hybrid Field of Sec.4.4
andSec. 3, COLMAP’s distortion estimation lacks accuracy,
highlighting the necessity of our hybrid distortion field for
improved expressiveness and precision.

We hypothesize that this limitation stems from the
structure-from-motion (SfM) pipeline [14] in COLMAP.
COLMAP primarily utilizes the central region of raw im-
ages (corresponding to a small FOV), where conventional
distortion models perform well. Consequently, lens dis-
tortion has minimal influence on extrinsic estimation, as
COLMAP can still rely on the image center to solve linear
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Figure 3. Qualitative Comparison on Perturbed FisheyeNeRF dataset [6]. We show the novel view rendering with perturbed camera
poses. We disable and enable camera optimization to illustrate the capability of our pipeline on recovering inaccurate poses along with
distortion modeling.

equations. However, when attempting to leverage the full pronounced.
FOV of raw images for reconstruction, the limitations of a

fixed distortion model and a single-plane projection become To validate the self-calibration capability of our pipeline,

we manually introduce noise into the extrinsics produced



(d) Chair

Figure 4. We carry qualitative comparison with CamP at noise level 0.15. Each scene show CamP, our method, and the ground truth, from
left to right. Our method is able to produce sharp renderings at this noise level, where CamP fails.

Image Metrics Camera Metrics

PSNR SSIM LPIPS Position Orientation

3DGS 16.54 0.733  0.273  0.2911 5.015
CamP 19.07 0.840 0.289  0.1879 5.619
Ours 32.84 0964 0.034  0.0082 0.919

Methods

Table 1. Comparison with CamP [13] and 3DGS [7] in the NeRF-
Synthetic dataset. We report average camera orientation errors in
degrees, and position error in world units.

by COLMAP and jointly optimize extrinsics, intrinsics, and
distortion. As shown in Fig. 3, our approach effectively re-
fines all camera parameters and distortion simultaneously.
Without extrinsic and intrinsic optimization, the hybrid field
can only predict coarse distortion, while misaligned poses
contribute to the blurry reconstruction seen in Fig. 3 (a).
Even with significant perturbations in poses and intrinsics,
our method robustly recovers accurate camera parameters
and the distortion field after training, as illustrated in Fig. 3

(b).
2.3. Pure Camera Optimization

We use the NeRF-Synthetic dataset [12], which includes
known ground truth camera poses. The dataset contains 100
viewpoints for training and 200 additional viewpoints for
computing test error metrics. We first add noise to perturb
the rotation angles of camera extrinsics, the positions of the
camera centers, and the focal lengths. These noisy cameras
are used to train both the baselines and our method. We
compare our method with CamP [13], implemented on Zip-
NeRF [3], a state-of-the-art method for joint optimization
of 3D scenes and camera extrinsics and intrinsics. In ad-

Scenes ‘ Metric 0 0.1 0.15 0.2 0.25

SSIM 0987 0.988 0.988 0.987 0.980
Chair PSNR 3581 36.10 3599 3583 34.35
LPIPS 0.012 0.012 0.012 0.012 0.019

SSIM 0983 0974 0972 0969 0.965
Lego PSNR 3577 3478 3429 3370 33.15
LPIPS 0.015 0.021 0.023 0.025 0.029

SSIM 0955 0954 0.953 0953 0.946
Drums PSNR  26.17 26.15 26.04 26.01 2530
LPIPS 0.037 0.038 0.039 0.040 0.045

SSIM 0960 0960 0.951 0.942 0.843
Materials | PSNR  29.99 2993 2891 2795 15.17
LPIPS 0.034 0.036 0.044 0.052 0.158

SSIM 0991 0989 0987 0974 0.923
Mic PSNR 3534 3458 33.65 30.07 18.78
LPIPS 0.006 0.008 0.010 0.019 0.087

SSIM 0907 0.873 0.776 0.719 0.700
Ship PSNR 3091 28.66 2096 16.80 15.10
LPIPS 0.106 0.126 0.203 0.262 0.294

SSIM 0987 0987 0.984 0.955 0.859
Ficus PSNR 3485 34.84 3399 28.08 1854
LPIPS 0.012 0.012 0.014 0.039 0.125

SSIM 0985 0985 0.985 0.983 0.982
Hotdog PSNR  37.67 37.65 37.63 37.05 36.53
LPIPS 0.020 0.020 0.020 0.022 0.025

Table 2. Quantitative Comparison on the Perturbed Synthetic
Dataset

dition to CamP, we also report the performance of vanilla
Gaussian Splatting without pose optimization.

The models are evaluated on two criteria, following the
protocol in CamP [13]. First, we measure the accuracy of



Method Chairs Cube Flowers Globe Heart Rock
!
eto SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS
3DGS [7] 0.431 1406 0547 0507 1521 0.533 0281 1291 0.609 0.502 15.09 0.530 0.505 15.19 0.549 0.297 1270 0.595
Ours (Freeze Init)  0.583 1828  0.290 0.637 21.64 0.296 0443 18.09 0379 0.580 19.63 0327 0.660 20.87 0.282 0.511 20.24 0.280
Ours 0.832 2345 0.106 0.786 24.63 0.162 0.693 22.01 0.172 0.790 23.63 0.126 0.775 2342 0.195 0.787 24.88 0.145

Table 3. Ablation on Invertible ResNet Optimization. We compare our final optimized hybrid field with a fixed hybrid field reconstruc-
tion on FisheyeNeRF [6]. While the distortion estimated from COLMAP [14] significantly improves quality compared to vanilla 3DGS [7],

optimizing the invertible ResNet further enhances performance.

Chairs

Cube

Flowers

(a) Freeze Intialization

(b) Ours

Figure 5. Comparison on Invertible ResNet Optimization. This version shows the comparison transposed, grouping by scenes instead

of optimization stages.

the estimated camera poses in the training views after ac-
counting for a global rigid transformation. Second, we mea-
sure the quality of rendered images at the held-out camera
poses after a test-time optimization to adjust for a potential
global offset. Tab. 1 shows that our method outperforms
both vanilla 3DGS and CamP in both image and camera
metrics by a large margin.

We further evaluate our model by perturbing the cam-
era poses with varying levels of noise. Specifically, we add
Gaussian noise with a standard deviation ranging from 0
to 0.3 to the camera poses. For reference, we report the
increased noise levels for each scene in Tab. 2. Handling
larger noise in camera poses presents a significant chal-
lenge. As shown in Fig. 2 and Fig. 4, CamP’s performance
drops significantly due to its tendency to fall into local min-
ima when the initial camera poses contain substantial errors.
In contrast, our method exhibits much slower degradation in

novel-view synthesis performance.
We also include the video “pose_opt.mp4” to visualize
the optimization process.

3. Distortion Estimation from COLMAP

In practice, the distortion estimated from the SfM [14]
pipeline can be used as an initialization for our hybrid field,
stabilizing training and accelerating convergence. However,
these parameters are inaccurate when derived from highly
distorted images. We verify the necessity of optimizing our
hybrid field during reconstruction both quantitatively and
qualitatively.

To assess this, we fit the COLMAP [14] distortion pa-
rameters within our hybrid field and freeze the network. As
shown in Tab. 3, the distortion initialization from COLMAP
improves upon Vanilla 3DGS [7] but remains far from ac-
curate in modeling distortion compared to our approach.
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(a) Low Resolution (b) High Resolution

Figure 6. Resolution of Control Grid. When the resolution of the
control grid is decreased, the central region retains decent quality
due to minimal distortion. However, as highlighted by the red and
blue boxes in the corners of the image, a sparse control grid for the
hybrid field results in noticeably distorted renderings.

While the hybrid field produces a roughly correct distortion
field, it results in blurry reconstructions, as shown in Fig. 5.
This degradation is particularly noticeable in scenes with
many straight lines, such as the jalousie windows in the
chairs scene. The photometric evaluation in Tab. 3 demon-
strates that our fully optimized hybrid field significantly
outperforms the estimated distortion parameters. These re-
sults highlight the importance of optimizing our hybrid field
for achieving more accurate reconstruction and distortion
modeling.

4. Computational Efficiency

Training Time. To verify the hypothesis that our hy-
brid method achieves a better balance between expressive-
ness and efficiency, we perform an ablation study on the
FisheyeNeRF dataset [0]. Specifically, we analyze the grid
resolution of P, which determines the number of evalua-
tions required for the most computationally expensive part
of the pipeline—the invertible ResNet. Tab. 4 reports the
PSNR and training time for three different grid resolutions,
as well as for Fisheye-GS [10] and vanilla 3DGS [7]. We
observe that increasing the resolution of P, leads to bet-
ter performance but longer training time. Further reducing
the grid resolution does not significantly shorten computa-
tion time, as other operations, such as gradient computation
for camera parameters, begin to dominate. Fortunately, all
hybrid solutions significantly outperform vanilla 3DGS and
Fisheye-GS. The lowest-resolution setting we tested intro-
duces only a 7-minute training time overhead compared to
3DGS, in exchange for a > 8 dB boost in PSNR.

Control Grid Resolution. A higher-resolution control
grid results in a smoother distortion field representation but
slower training. To better illustrate the effect of control grid
resolution, we visualize two types of resolutions (i.e., 265 x

P. Resolution  PSNR (1) Time (mins)
265 x 149 23.67 55
132 x 74 22.99 36
66 x 37 22.44 25
Explicit Grid 14.93 22
Fisheye-GS [10] 21.84 46
3DGS [7] 14.19 18

Table 4. Ablation Study on Control Grid Resolution. Param-
eter study on different control point resolutions, showing that our
method has favorable cost/performance trade-off.

Garden Studio
Method
SSIM PSNR LPIPS SSIM PSNR LPIPS
Fisheye-GS [10] 0.530 14.94 0.542 0.536 1224 0.549
Ours 0.882 27.85 0.144 0.965 33.86 0.044
Table 5. Evaluation on Real-World Wide-Angle Captures.

We evaluate Fisheye-GS [10] and our method on two real-world
scenes captured with large FOV fisheye cameras. Our method out-
performs the baseline by a significant margin.

Method Test View Num SSIM PSNR LPIPS

Fisheye-GS [10] Fisheve 100 0.630 1594 0.463
Ours Y 100 0.886 30.72 0.146

Table 6. Evaluation on Mitsuba Scenes. The comparison be-
tween our method and Fisheye-GS [10] illustrates the expressive-
ness of our hybrid field.

149 and 66 x 37). While there are no significant differences
in the central region, the distortion at the edges is better re-
covered with a higher-resolution grid. Since the distortion
field becomes smoother, a high-resolution control grid pro-
duces more accurate distorted lines, as shown in the red and
blue boxes of Fig. 6.

5. Extra Experiments
5.1. Quantitative Comparisons with Fisheye-GS

In addition to Fig. 5 in the main paper, we also provide a
quantitative evaluation of our method compared with the
baseline Fisheye-GS [10] in Tab. 5 and Tab. 6. The per-
formance degradation observed in the baseline method is
primarily due to the limitations of the conventional camera
distortion model used during reconstruction, which strug-
gles at the edges of large FOVs. As a result, there is no
geometric consistency in the peripheral regions to produce
uniform gradients for optimizing the Gaussians. When ren-
dering novel views, these Gaussians appear as large floaters
that occlude the camera view. We further visualize this phe-
nomenon in the failure case video reconstructed by Fisheye-
GS [10]. The center area is revealed as we gradually de-
crease the scale of the Gaussians. Please refer to our sup-
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Figure 7. Single Planar Projection with Hybrid Field. Our hy-
brid field can be directly applied to a single plane during rasteri-
zation. However, the limitation of single planar projection is that
it cannot cover the full FOV of the raw images, leading to partial
loss of information in the peripheral regions.

plementary video “fisheye-gs_failure.mp4” for a compari-
son with the parametric distortion model.

5.2. Qualitative Results of Cubemap Ablation

As illustrated in Fig. 2 of the main paper, we apply a cube-
map to overcome the limitations of perspective projection.
Even with our hybrid distortion field, we can only utilize the
central region of raw fisheye images, as shown in the bot-
tom row of Fig. 7. In contrast, rendering a cubemap enables
us to achieve a larger FOV, allowing us to compute the pho-
tometric loss with reference raw images for optimization, as
demonstrated in Fig. 7 of the main paper. We also provide a
quantitative evaluation in Tab. 4 of the main paper, showing
that the final reconstruction quality is compromised when
using a single planar projection.

Additionally, the boundary of the final distorted render-
ing is irregular, primarily because the distortion information
at the boundary heavily relies on extra regions that are not
covered by single planar projections.

5.3. Qualitative Comparisons with Different Num-
bers of Input Views

We report quantitative results in Tab. 2 of the main paper,
where our method outperforms the baseline even with sig-
nificantly fewer input views, down to 10-15%.

To illustrate the impact of varying input view counts, we
visualize the rendering quality as the number of input views
decreases. Even with as few as 25 input views, our method
still achieves reasonable performance, as shown in Fig. 8.
This demonstrates our method’s ability to effectively utilize
large FOV cameras and achieve comprehensive scene cov-
erage during reconstruction.

Mitsuba Kitchen Mitsuba Room1 Mitsuba Room2

SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS

3DGS [7] 200 0470 11.09 0435 0595 1527 0406 0897 30.88 0.155
10 0.644 2303 0346 0556 2226 0377 0.644 2303 0346
25 0.689 2475 0303 0.613 2421 0318 0825 2481 0254
50 0708 2544 0285 0.640 2507 0301 0856 2826 0214
100 0.794 2756 0.272 0.686 26.27 0314 0.920 33.21 0.107

Fisheye-GS [10] 100  0.601 1430 0485 0549 1554 0548 0.739 1797 0.355
10 0.801 26.04 0202 0.703 23.69 0232 0.806 19.06 0.256
25 0.855 2862 0.155 0783 2671 0.180 0.853 2428 0.167
50 0.870 2955 0.151 0801 27.57 0.172 0.883 2729 0.133
100 0.886 30.72 0.146 0.842 2846 0.180 0.929 31.16 0.095

Method Num

Ours

Ours

Table 7. Evaluation on Mitsuba Synthetic Scenes. We compare
our method with vanilla 3DGS [7] and Fisheye-GS [10] on a set
of held-out captures. Since vanilla 3DGS does not support fish-
eye rendering, we render several perspective images at the same
locations and look-at directions for comparison. We directly com-
pare the fisheye rendering results with both Fisheye-GS and our
method.

5.4. Comparisons with Regular FOV Cameras

Synthetic Mitsuba Scene Captures. To carefully control
the experimental settings, we customized a camera mod-
ule in the Mitsuba ray tracer [5] using camera parameters
derived from DSLR lenses, as profiled in the open-source
Lensfun [1]. We also utilize 3D assets, including geometry,
materials, and lighting, from [4] to produce renderings. Our
synthetic dataset contains three large indoor scenes and four
object-centric scenes. All indoor scenes follow a Sigma
180° circular fisheye camera. Two of the object scenes are
rendered with a 120° fisheye lens, while the others are ren-
dered with classic radial distortion.

To capture detailed perspectives of the scene, cameras
are placed close to the objects at varying distances. For
Room?2, since objects are uniformly distributed in the space,
we placed a set of camera centers along a Hilbert curve, then
oriented each fixed camera center to cover the surroundings.
The number of images captured at each point is reduced for
180° images compared to those with a 90° FOV, as shown
in the number of captures in Tab. 7.

Qualitative Results. To verify the accuracy of self-
calibration, we generate a set of hold-out cameras that share
the same distribution as the training set. For each validation
camera, we render paired perspective and 180° fisheye im-
ages. Unlike real-world datasets such as Garden and Studio,
our synthetic dataset allows direct comparison with ground-
truth perspective views. As shown in Fig. 9, we render an
additional 20° for the hold-out cameras to highlight the dif-
ference in coverage between our method and conventional
capture approaches.

It is worth noting that in the comparison between our
method and 3DGS [7], we evaluate in perspective views
since 3DGS [7] does not support fisheye rendering, whereas
our method can generate perspective views after training.
In contrast, we directly compare our method with Fisheye-
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Figure 8. Qualitative Evaluation of Reconstruction with Varying Numbers of Large FOV Inputs. Our method achieves high-quality
reconstruction even with a relatively small number of input images, thanks to our hybrid distortion representation and cubemap resampling.
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Figure 9. Evaluation of Perspective Rendering. After recon-
struction, our method can render perspective views with arbitrary
FOV. We compare the perspective renderings produced by our
method with those rendered from small-FOV reconstructions us-
ing 3DGS [7].

GS [10], as both methods natively support fisheye render-
ing.

5.5. More Real-world Scenes

Scene Captures. We use a Canon 5D Mk III DSLR cam-
era with a Canon 8mm-15mm fisheye lens, zoomed out to
8mm with a 180° FOV, to capture a complex indoor office
scene, where we place models and spheres on a table. Im-
ages are taken close to the table to capture the details of the
various models and spheres. We also use a Meike 3.5mm
/2.8 ultra-wide-angle circular fisheye lens to capture the
same office.

Additionally, we mount two fisheye cameras on a rig
configured such that the cameras are perpendicular to each
other. This camera rig is used to capture a backyard scene
by walking clockwise and counterclockwise twice to record
videos. The benefit of using this rig is that the relative pose
between the two fisheye cameras is fixed, simplifying the
StM [14] pipeline for estimating accurate poses.

Qualitative Results. Qualitative results are shown
in Fig. 10. Our method effectively recovers details in the
central region while accurately modeling lens distortion for
background elements, such as painting frames and lines on
the white wall.

As shown in Fig. 11, our method converges to an accu-
rate calibration, ensuring that lines on the house’s surface
and the ladder leaning against the tree remain straight when
rendered in perspective views.
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(b) Ours (Fisheye)
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Figure 10. Reconstruction from 180° FOV Fisheye Captures. Using a Canon fisheye camera, we capture the scene and reconstruct the
office with our method. Both perspective and fisheye views are rendered to demonstrate the quality of our reconstruction.

5.6. Adaptability to Different Lens Distortions

As mentioned in the last part of Sec. 4.2 of the main paper
and also shown in Fig. 6, we introduced synthetic distor-
tions, including both radial and tangential components, to
images from the LLFF dataset [11].

We also apply moderate radial distortion to our synthetic
dataset and reconstruct several object scenes. After training,
we can render undistorted images. The perspective render-
ing increases the FOV while maintaining the same camera

extrinsics. As shown in Fig. 12, distorted edge lines, such
as those on the Lego and Car objects, are correctly recov-
ered into straight lines, demonstrating the capability of our
hybrid field to model radial distortion effectively. We also
report quantitative evaluations in Tab. 8. Note that the radial
distortion is relatively subtle, so the improvement is not as
pronounced compared to other types of lenses.



(a) Ours (Perspective)
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Figure 11. Large FOV Reconstruction from a Customized Fisheye Rig. We reconstruct a backyard from images captured using a fisheye
rig. Our method achieves accurate geometric corrections, such as straightening the lines on the wall and the edges of the house.

Method PSNR SSIM LPIPS
Vanilla-GS [7] 2537 0923 0.121
Ours 28.00 0932 0.093

Table 8. Evaluation on Radial Distortion of Mitsuba Synthetic
Scenes. We compare our method with 3DGS [7] in object-centric
scenes with slight radial distortion, where our method still pro-
duces better reconstructions.

5.7. Comparison of Regular and Invertible ResNet

Neural networks can model complex non-linear fields, but
the key advantage of iResNet is its effective regularization.
Light rays passing through the lens are strictly bijective and
invertible. iResNet, using fixed-point iteration, enforces
this property at minimal cost. We visualize the error map
compared to the distortion of the GT lens in synthetic scenes
in Fig. 13. We show that iResNet predicts smooth distortion
with low error, whereas ResNet produces a highly asym-
metric field with large errors. The large error produced by
ResNet is largely due to the lack of regularization. The dis-
placement predicted by ResNet can be arbitrary and does
not follow the two properties that real-world light rays hold.

5.8. Qualitative Results in Undistorted Rendering

We provide additional rendering results in this section. We
render both fisheye and perspective views on the FisheyeN-
eRF dataset [6]. In Fig. 14, we fix the view direction and
camera location for fisheye rendering and extend the FOV
for perspective rendering. In scenes such as Cube, Chairs,
and Flowers, we observe that straight lines are accurately
recovered during reconstruction. The lines on the wall be-
hind the Cube and the window frames serve as strong evi-
dence that our self-calibration system precisely models lens
distortion.

6. Implementation Details

Our implementation is based on the codebase from Gaus-
sian Splatting [7] and gsplat [15]. We use the same loss
function as 3DGS for training [7]. The invertible ResNet
is constructed using FrEIA [2]. We follow Kerbl et al.
[7] to select hyperparameters for optimizing 3D Gaussians.
We also adopt the implementation of MCMC densifica-
tion [8]. Compared with vanilla densification, MCMC helps
remove floaters by using opacity thresholding to relocate
dead Gaussians. While the final quantitative results on the



(a) Lego

(c) Rover

(b) Car

(d) Spaceship

Figure 12. Radial and Perspective Rendering. We evaluate our method on a synthetic radial distortion dataset. Our approach successfully
recovers slight radial distortion during reconstruction and enables perspective rendering upon completion of training.

yyyyyyyyyyy

Error map for iResNet Error map for ResNet

Figure 13. Distortion Error Map. We visualize the error map
between the predicted distortion and the ground truth distortion
from Mitsuba synthetic scenes.

test set remain largely unchanged, applying the MCMC
technique reduces visual floaters in novel viewpoints. For
high-resolution scene captures such as Backyard and Of-
fice, we also use bilateral grids and anti-aliasing [16] for
improved quality.

As explained in Fig. 5, optimizing our hybrid field is
essential for successful self-calibration. We use Adam [9]
to train the invertible ResNet. The initial learning rate for
the invertible ResNet is set to le-5 and gradually decreases
to le-7 for FisheyeNeRF [6]. The final learning rate for
real-world captures is le-8, including Studio, Garden, and
Backyard in Figure 11, as well as more complex real-world
captures such as Office Fig. 10. The learning rate for Mit-
suba indoor synthetic scenes is set to 1e-8, while for object-
centric scenes, it is le-7. All experiments are conducted on
a single NVIDIA GeForce RTX 3090.

7. Failure Cases and Limitations

Real-world outdoor captures often include the sky. Recon-
structing the sky poses challenges due to moving clouds and
the large uniform regions of blue and white without tex-
tures. The 3DGS [7] method tends to assign large Gaus-
sians to the sky, resulting in artifacts when rendering novel
views. Occasionally, some large Gaussians leak into the
scene’s center, appearing as a thin film in front of the cam-
era. Similarly, for indoor scenes, regions with uniform tex-
tures, such as colored walls, present challenges. These tex-
tureless walls are often represented by Gaussians with large
covariance matrices, causing similar rendering artifacts as
observed with the sky.

The Gaussian sorting we propose alleviates the intensity
discontinuities at the boundaries of cubemap faces caused
by the multiple projections of a single Gaussian. However,
since the projection of 3D covariance follows the equation
in Sec. 3.1 of the main paper, identical 3D Gaussians can
still result in different 2D covariances on different faces.
This issue can be addressed by implementing smoother
transitions between projection faces, such as spherical pro-
jection.

Finally, we do not account for the entrance pupil shift
phenomenon commonly observed in fisheye lenses. This
effect is distinct from the lens distortion we are currently
modeling. As a result, our method still struggles with such
cameras, as shown in Figure 10. While entrance pupil shift



(c) Flowers (d) Chairs

Figure 14. Fisheye and Perspective Rendering. After optimization, our method allows rendering in either fisheye or perspective views.
Perspective rendering can be achieved by simply removing the hybrid field.

is negligible for distant scenes, it can cause splat misalign-
ments in near-field scenes (e.g., the blurry sphere surface in
the Office scene shown in the video), as the shift can reach
up to half a centimeter for full-frame lenses. It remains an
exciting direction to study how to model such lens effects
to further improve reconstruction quality.
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