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Algorithm 1 ViM-VQ

1: Input: Weight matrix W, calibration data (x,y)
2: Output: Codebook C, assignments A
3: C,A = K-Means(W, k)
4: ▷ Phase 1: Fast Convex Combination Optimization
5: for each sub-vector wo,i/d in W do
6: Co,i/d = Topn(−∥wo,i/d − c(k)∥22)
7: Ro,i/d = softmax(zo,i/d)
8: Convex combination: (Co,i/d,Ro,i/d)
9: end for

10: Ŵ =
∑
C ⊙R

11: ▷ Initialize codewords and ratios
12: while not converged do
13: Linit = ∥W − Ŵ∥22
14: C ←C−O(∇cLinit, θc), R←R−O(∇rLinit, θr)
15: end while
16: ▷ Phase 2: Incremental Vector Quantization
17: for calibration step t = 1 to T do
18: ŷ = ϵq(x)
19: L = Lt + Lbkd + Lr

20: C ←C−O(∇cL, θc), R←R−O(∇rL, θr)
21: ▷ Confirm high-ratio assignments
22: for each sub-vector with rmo,i/d > τ do
23: ŵo,i/d ← cmo,i/d
24: ao,i/d ← index(cmo,i/d)
25: end for
26: ▷ Adaptive candidate replacement
27: for each candidate with rmo,i/d < λ do
28: cmo,i/d ← argmin

c(k)∈C\Co,i/d

∥ŵo,i/d − c(k)∥22

29: end for
30: end for
31: return C, A

8. Algorithm Details

Algorithm 1 presents the complete pseudocode of ViM-VQ,
which consists of two main phases: Fast Convex Combina-
tion Optimization (lines 4-15, 26-29) and Incremental Vec-
tor Quantization (lines 17-25).

In the first phase, the algorithm initializes the codebook
C and assignments A using K-Means clustering (line 3).
For each weight sub-vector, it identifies the top-n near-
est candidate codewords based on Euclidean distance (line
6) and computes soft assignment ratios using the softmax
function (line 7). The convex combinations of candidate
codewords and their ratios are then optimized to minimize

Type Method
Top-1 Accuracy (%)

3-bit W3A8 2-bit W2A8 1-bit

UQ

GPTQ 76.81 - 2.47 - -
AWQ 77.10 - 1.90 - -

OmniQuant 78.44 - 5.14 - -
MambaQuant 77.01 76.67 3.49 3.19 -

PTQ4VM 77.17 77.02 3.62 3.54 -

VQ
DKM 80.02 79.60 79.18 78.62 74.57

VQ4DiT 79.73 79.51 78.86 78.56 74.37
ViM-VQ 80.34 80.16 79.46 79.19 75.58

Table 7. Quantization results of Vim-B on ImageNet-1K valida-
tion dataset. Codebooks are quantized to 8-bit to align with ”A8”.

Method Setting Weight Storage Size Ratio Time

FP - 360MB 1.0× -

GPTQ per-
group
(g128)

Qweight + S + Z =
22.5MB + 6.0MB

12.6×
35m

AWQ 1m
OmniQ 48m

MambaQ per-
channel

Qweight + S + Z =
22.5MB + 1.3MB

15.1× 16m
PTQ4VM 92m

DKM 256
×
4

Qweight + C =
22.5MB + 0.5MB 15.7×

1 day
VQ4DiT 104m
ViM-VQ 88m

Table 8. Calibration efficiency of 2-bit quantization of Vim-B. ’S’,
’Z’, and ’C’ denote the memory usage of scales, zero-points, and
codebooks, respectively. ’Ratio’ and ’Time’ represent compres-
sion ratio and calibration time, respectively.

reconstruction error (lines 11-15).
The second phase performs incremental quantization

over T calibration steps. In each iteration, the algorithm up-
dates both codewords and ratios using gradient descent (line
20) based on a combined objective function that includes
task loss, block-wise knowledge distillation, and regular-
ization (line 19). High-confidence soft assignments (with
ratio r > τ ) are confirmed as hard assignments (lines 21-
25), while candidates with low ratios (r < λ) are adaptively
replaced with better alternatives (lines 26-29).

9. Additional Experimental Results
To provide a thorough evaluation, we benchmark ViM-VQ
against a wide range of state-of-the-art quantization meth-
ods on the Vim-B model. The comparisons, detailed in
Table 7, cover both weight-only quantization, such as the
3-bit setting, and mixed-precision quantization, denoted as



WbA8. Our baselines include specialized techniques for
Mamba models like MambaQuant and PTQ4VM, along-
side high-performance methods from the language model
domain like AWQ [23] and OmniQuant [32], to ensure a
comprehensive and challenging comparison.

The results in Table 7 demonstrate the superiority of vec-
tor quantization (VQ) at extremely low bit-widths. While
uniform quantization (UQ) methods perform reasonably
at 3-bit, their performance degrades substantially at 2-bit,
with accuracy dropping to as low as 1.90% for AWQ and
2.47% for GPTQ. In contrast, VQ methods remain effec-
tive. ViM-VQ, in particular, establishes a new state-of-the-
art by achieving a Top-1 accuracy of 80.34% at 3-bit and
79.46% at 2-bit. At an extreme 1-bit precision, ViM-VQ
maintains an accuracy of 75.58%, outperforming its clos-
est VQ competitor. The leading performance of ViM-VQ
extends to mixed-precision settings, for instance, achieving
79.19% in the W2A8 setting.

Table 8 analyzes the practical efficiency of various meth-
ods, focusing on storage compression and calibration time.
Vector quantization methods demonstrate superior storage
efficiency due to their compact codebook representation.
While UQ methods like GPTQ and MambaQuant add 6.0
MB and 1.3 MB of overhead for scales and zero-points,
respectively, all VQ methods add only 0.5 MB for their
codebooks. As a result, ViM-VQ achieves the highest com-
pression ratio of 15.7×, reducing the model size from 360
MB to just 23 MB, making it suitable for deployment on
resource-constrained devices.

Regarding time efficiency, ViM-VQ achieves an effec-
tive balance between performance and cost. It completes its
calibration in 88 minutes, a duration considerably shorter
than that of other high-performing VQ methods. For com-
parison, DKM requires an entire day for calibration, while
VQ4DiT takes 104 minutes. The efficient calibration of the
model is attributed to our fast convex combination optimiza-
tion algorithm, which efficiently manages a small set of can-
didate codewords.
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