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Supplementary Material

A. Post-generation vs. In-generation Water-
marking: Limitations and Advances

In post-generation watermarking, also known as post-hoc
watermarking, watermarks are injected into images after
generation [1]. This approach, while straightforward, in-
curs additional computational overhead and is vulnerable
to circumvention. For example, in cases of model leak-
age, attackers can easily detect and bypass the postpro-
cessing module [10]. Additionally, post-diffusion methods
often result in poorer image quality, introducing artifacts,
and their separable nature makes them easily removable in
open-source models, such as by commenting out a single
line of code in Stable Diffusion code base [4].

In contrast, in-generation watermarking integrates the
watermarking process into the image generation pipeline,
improving stealthiness and computational efficiency. This
approach embeds watermarks directly into generated im-
ages without requiring separate post-hoc steps. It is also
less susceptible to diffusion denoising or removal via sim-
ple modifications.

The closest related work is [6], which also embeds wa-
termarking bits during generation. However, their method
requires retraining a UNet layer, limiting its plug-and-play
capability, as discussed in Section 2 and Figure 4. Our ap-
proach, by comparison, is more convenient, embedding wa-
termarks directly within the text prompt as a watermarking
token.

Focusing on object watermarking, our method differs
from [11] and [8] in several key aspects. While these meth-
ods rely on segmentation maps for supervised watermarking
of specific objects in pre-existing images, ours is unsuper-
vised, leveraging attention maps generated automatically
during text-to-image generation. Unlike post-hoc methods,
which watermark only pre-existing images, our approach
simultaneously performs text-to-image generation and wa-
termarking. This enables compatibility with techniques like
textual inversion and ensures robustness against attacks,
overcoming significant limitations of post-hoc methods.

B. Algorithm for Watermark Heatmap Gener-
ation

We present an algorithm for generating the heatmaps de-
picted in Figure 4 of the main paper. The process involves
iterating a defined patch across the image to construct the
heatmap. Details regarding the minimum allowable size of
the patch can be found in Section 4.4. The patch represents
the smallest region of the image that can reliably extract bits

Method Imperceptibility Robustness to Basic Attacks (BA):

PSNR ↑ SSIM ↑ FID ↓ None ↑ Bright. ↑ Contrast ↑ Blur ↑ JPEG ↑
Dct-Dwt 39.50 0.97 15.93 0.96 0.89 0.91 0.90 0.55
SSL Watermark 31.50 0.86 21.82 0.95 0.91 0.84 0.88 0.55
HiDDeN 31.57 0.88 22.67 0.99 0.93 0.88 0.80 0.88
Ours with [12] 37.92 0.95 15.83 0.99 0.99 0.97 0.96 0.96
Ours with [3] 40.92 0.97 14.83 0.99 0.98 0.99 0.97 0.96

Table 1. Performance comparison of our method with post
generation watermarking methods. We evaluate imperceptibil-
ity and robustness against basic attacks. Higher PSNR and SSIM,
and lower FID, indicate better imperceptibility. Higher robustness
scores indicate greater resistance to attacks.

using a message detector with high confidence; for further
explanation, refer to Section 4 in the main paper. Notably,
the detector employed is an off-the-shelf solution. The re-
sulting heatmap is normalized to a range of [0, 1], where
a value of 0 indicates regions with 0% bit accuracy, and a
value of 1 corresponds to regions achieving 100% bit ac-
curacy. Lastly, we apply Gaussian blur that preserves the
edges and boundaries better than other uniform blurring fil-
ters, which is important for maintaining the structure of the
heatmap.

C. Number of Bits v/s Bit Accuracy

We perform an ablation study on the number of bits that can
be embedded into images by our method, without sacrific-
ing on bit accuracy. Methods such as [2] can embed upto
100 bits during watermarking. Extending the effort to push
the benchmark for number of bits, we show our results on
watermarking upto 128 bits.
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Figure 1. Number of bits v/s Bit Accuracy: It can be seen from
the above plot that our method can embed 128 bits without loss in
bit accuracy. We observe a bit accuracy of over 90% with 128 bits.



Algorithm 1 Watermark Heatmap Generation

Input: Watermarked image I; Watermark Detector
Dw; Ground Truth Key m.

1: Select a patch dimensions h× w.
2: Divide I into overlapping patches {Pij}, where Pij is

the patch at location (i, j) of size h× w.
3: Initialize a heatmap matrix H of zeros with the same

spatial resolution as I.
4: for each patch Pij in I do
5: Extract watermark string from the patch:

m′
ij = Dw(Pij)

6: Compute the bit accuracy for the patch as (where
|m| is the length of the bit string):

Aij =
1

|m|

|m|∑
k=1

[mk = m′
ij,k]

7: Assign the bit accuracy value to the center pixel of
the patch in the heatmapH:

H(i, j)← Aij

8: end for
9: Normalize the heatmap values to the range [0, 1]:

Hnorm =
H−min(H)

max(H)−min(H)
.

10: Apply a smoothing filter (Gaussian blur) to Hnorm:

Hsmooth = GaussianBlur(Hnorm, σ).

11: Generate a heatmap image by overlaying Hsmooth on the
original watermarked image I.
Output: Heatmap image highlighting regions with wa-
termark accuracy.

D. Comparison to methods that use TPR as
evaluation metric

We report True Positive Rate of our watermark detection in
comparison with baselines including [5, 10]. We threshold
the FPR to 0.1% and report TPR:0.1%

E. Empirical study to find the optimal timestep
for watermarking

As discussed in the ablation studies section of our paper,
we perform empiracal study to find the optimal timestep τ∗

that provides an balance between the trade off between wa-
termark invisibility and bit accuracy.

Method Imperceptibility Robustness to Basic Attacks (TPR):

PSNR ↑ SSIM ↑ FID ↓ None ↑ Bright. ↑ Contrast ↑ Blur ↑ JPEG ↑
TreeRings 33.75 0.91 18.93 1.00 0.91 0.90 0.92 0.89
ConceptWM 32.89 0.89 24.58 0.98 0.90 0.84 0.83 0.85
Ours 40.92 0.97 14.83 0.99 0.99 0.98 0.99 0.97

Table 2. Performance comparison of our method with methods
that use TPR as evaluation metric. We evaluate imperceptibility
and robustness against basic attacks. Higher PSNR and SSIM,
and lower FID, indicate better imperceptibility. Higher robustness
scores indicate greater resistance to attacks.
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Figure 2. Optimal sub-range of noise timesteps for invis-
ible watermarking. Image quality and watermark robustness
are crucial evaluation metrics for watermarking techniques. Our
method integrates watermarking into the core denoising module of
a T2I pipeline. We study the evaluation metrics for various noise
timesteps, and we find that to maintain invisible watermarking, the
timesteps closest to the LDM encoder during forward process are
optimal. We test this finding for multiple runs to utilize this find-
ing into our watermarking method.

F. Details on Training and Inference time for
watermarking

As discussed in our method adds τ∗ timesteps of noise dur-
ing the forward processing and performs denoising to train
W∗ token embeddings. We use 2000 images from MS
COCO dataset for training and the entire training process
takes about 2 GPU hours when benchmarked on NVIDIA
RTX A6000 GPU.

During inference, the time overhead is minimal, the sig-
nificant storage savings (a 105× reduction in parameters)
are noteworthy. Benchmarking on an RTX A6000, process-
ing a single image (averaged over 1000 images) shows that
for a T2I model, processing 50 diffusion steps takes 5.2 sec-
onds without watermarking and 5.4 seconds with a minimal
0.2-second overhead due to the watermarking token.



Figure 3. Watermark Invisibility and W∗ Attention Map We provide the attention map of our watermarking token W∗. Our method
achieves a very high PSNR of 38.36 while maintaining a bit accuracy of over 95%. The attention map of W∗ does not interfere with the
attention maps of other tokens, preserving overall image quality.



Figure 4. Diffusion Loss v/s Latent Loss We provide qualitative results for our choice of latent loss in our method. This figure shows
decoded latents at each step of denoising from τ∗ to 0 within T2I generation. The first row corresponds to our method, which achieves the
best image quality while watermarking. The second row represents training using Diffusion Loss, while the last row shows image quality
when W∗ is trained only on watermarking loss without any image loss applied.



Original AquaLoRA Stable Signature RoSteALS Ours (Object)

Prompt: An old-fashioned [drink W∗] next to a napkin

Prompt: A toy car in front of a [teddy bear W∗]

Prompt: A [woman W∗] running on a trail

Figure 5. Qualitative results 1 for different watermarking methods on generated images We provide several comparative examples
with existing watermarking techniques for a qualitative analysis of watermark invisibility. The above images compare the performance of
our method with AquaLoRA [3], Stable Signature [4] and RoSteALS [2]. We see that we surpass existing watermark methods in maintaining
invisibility while watermarking an object within an image. In addition to the watermarked image, we also provide difference image below
each watermarked image. Text in red denotes the object being watermarked by our method.



Original AquaLoRA Stable Signature RoSteALS Ours (Object)

Prompt: The [Great Wall W∗]

Prompt: Brown white and black white [guinea pigsW∗] eating parsley handed to them

Prompt: A shiba inu wearing a beret and [black turtleneck W∗]

Figure 6. Qualitative results for different watermarking methods on generated images (part 2).



Original AquaLoRA Stable Signature RoSteALS Ours (Object)

Prompt: A close-up of the keys of a [piano W∗]

Prompt: A map of [Manhattan W∗]

Prompt: A [sword W∗] in a stone

Figure 8. Qualitative results for different watermarking methods on generated images (part 3).



Original AquaLoRA Stable Signature RoSteALS Ours (Whole Image)

Figure 9. Qualitative results for different watermarking methods on generated images We present our results compared to the
baselines on images from WikiArt [9] and TNBC [7] datasets.



G. Attention Map of Watermarking Token

Our method appends a tokenW∗ to the text prompt to inte-
grate watermarking within the T2I generation. We utilize
attention maps of each token in the text prompt to over-
lay the attention map of watermarking tokenW∗ to control
object-level watermarking. Here we provide the attention
map of W∗ token during T2I generation. We see that the
difference image of watermarked and non-watermarked im-
ages is negligible. We amplify the difference image by 10
and provide as the image in the last column.

H. Choice of Latent loss for Trajectory Align-
ment

Our method uses Latent loss ∥zt(W)− z∗t ∥2 (where zt(W)
represent watermarked latents withW∗ appended to the text
prompt and z∗t denote non-watermarked latents with good
image quality) for trajectory alignment during watermark-
ing. In this section, we provide comparative of different
loss functions to ensure trajectory alignment (preserve im-
age quality) during watermarking while denoising. We see
that in Fig. 4 loss maintains the best invisibility for wa-
termarking. While diffusion loss performs better the case
without any image loss, we observe that, for black-box wa-
termarking, diffusion loss performs sub-par compared to the
chosen latent loss that controls the trajectory of the latents.

I. Robustness attacks implementation details

We follow standard implementation for simulation of vari-
ous attacks for watermarking as mentioned in [4] and [3].
Crop 0.1 removes 10% from the image retaining the cen-
ter. Resize 0.2 scales the image to 20% of its original size.
Rotate 25 rotates the image by 25 degrees. Operations are
performed using PIL and torchvision utilizing standard im-
plementations from [3, 4].

J. Medical image watermarking

We tested our method to watermark medical images where
invisibility of watermark is critical. Our method performs
invisible watermarking our medical images with a high
PSNR of 35.89 on the TNBC-Seg [7] dataset while main-
taining a bit accuracy of 0.99.

K. Qualitative results compared to baselines

In this section, we provide additional qualitative results
compared to different watermarking methods that perform
in-generation watermarking. We consider Stable Signature
[4], AquaLoRA [3], and RoSteALS [2] for comparing qual-
itative results.

Figure 10. We show our watermark heatmap generation module’s
ability to retrieve heatmaps from watermarked images with differ-
ent keys.

L. Heatmap detection based on user provided
key

We present the ability of our watermark heatmap gener-
ation module’s ability to retrieve correct watermarked re-
gions based on user key provided.
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