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7. DOLLAR Method Details

7.1. Pseudo-code

The pseudo-code of our DOLLAR method is displayed as
Alg. 1

Algorithm 1 Training procedure of DOLLAR.
1: Input: Pretrained teacher model vθ′ by LCV Eq. (13), pretrained

encoder and decoder, datasetD={(c,i)}
2: Output: Distilled student few-step generator Gθ.
3: //Initialize student and fake score model
from teacher

4: θ←θ′, θfake←θ′

5: while train do
6: Sample batch (c,i)∼D, encode x←Encoder(i)
7: //Update the generator with distillation
8: x̂←Gθ(c,ε),ε∼N (0,I)
9: Uniformly sample tn, forward diffusion xtn+m ←

F(x,tn+m)
10: LG =LVSD(θ;θ

′,θfake,x̂,c)+η1LCD(θ;θ
′,xtn+m ,c) //VSD

by Eq. (8), CD by Eq. (4)
11: Gθ←GradientDescent(θ,LG)
12: //Update fake score model
13: Uniformly sample t, forward diffusion xt←F(x̂,t)
14: θfake←GradientDescent(θfake,LCV(xt)) //Eq. (13)
15: //Train latent reward model
16: Merge batch x̃=x

⋃
x̂

17: Rl
ϕ←GradientDescent(ϕ,LLRM(ϕ;x̃,R)) //Eq. (10)

18: //Update the generator with latent re-
ward fine-tuning

19: Gθ←GradientDescent(θ,LFT(θ;x̂,Rl)) //Eq. (11)
20: end while

7.2. Diffusion Model Training and Inference
Conjugate Prediction Objective. Instead of applying noise
prediction in previous work [17, 46] and the standard velocity
prediction objective as in Instaflow [33], we apply a conjugate
velocity prediction objective:

LCV(θ)=Ex0∼q(x0),ε∼N(0,I),t

[
||vθ(xt,t)−(x0−ε)||22

]
(13)

Figure 7. Demonstration of
the conjugate velocity pre-
diction: relationship of v-
prediction for diffusion and
rectified flow.

with the sample xt being
diffused along the diffusion
trajectory according to the
schedule defined as Eq. (1).
The model is parameterized to
predict velocity vt on RF trajec-
tory at each timestep t, with a
constant target (x0−ε) (we take
a reverse here as opposed to
standard RF for notation clarity),
as visualized in Fig. 7. The
predicted velocity vθ(xt,t)=vyt
is the velocity on RF as the
conjugate point yt of sample xt



along the diffusion trajectory. This is practically easier to learn
compared to the time-varying velocity as in Eq. (3).

Why Conjugate Prediction Objective? The rectified flow
loss a commonly applied generative modeling objective in Sta-
bleDiffusion3 [11], MovieGen [41], Hunyuan Video [26], etc.
While prior video generation models apply DDPM noise sched-
ule, direct velocity prediction along the diffusion trajectory
following Eq. (2) has a time-varying target as Eq. (3), which is
practically harder to learn compared with the constant velocity
objective in Eq. (13). However, the standard rectified flow [29]
target is not along the diffusion trajectory, which requires to
model the trajectory with a different noise schedule other than
the DDPM one. The conjugate objective generates variance-
preserving noise samples along the diffusion trajectory while
predicts a constant velocity, through the conjugate relationship
between the diffusion trajectory and rectified flow, therefore it
is easier to learn.

Inference. After training, the reverse diffusion process fol-
lows:

xt−1 :=Denoise(xt,t,θ)

=(
√

ᾱt−1−
√

1−ᾱt−1−σ2
t

√
ᾱt√

1−ᾱt
)x̂0+

√
1−ᾱt−1√
1−ᾱt

xt+σtε (14)

with x̂0=
xt+

√
1−ᾱtvθ(xt,t)√

ᾱt+
√
1−ᾱt

as the predicted original samples.
Proofs see Appendix 7.5.

7.3. Implementation Details
Both the teacher and student models are trained on internal
image and video datasets with text captioning, comprising ap-
proximately O(100M) images and O(1M) videos. The teacher
model employs standard DDPM settings with 1000 sampling
steps: t ∈ [1,...,1000]. For inference, the teacher model uti-
lizes DDIM sampling to generate high-quality samples in 50
steps, with tn ∈ [19,39,...,999]. After distillation, the student
model adopts a default 4-step sampling protocol, as in previous
work [74], using timesteps [249,499,749,999]. Additionally,
we explore 1-step ([999]) and 2-step ([499,999]) generation
configurations for the student model in Sec. 5.5. Consistency
distillation (CD, discussed in Sec. 3.2) follows a DDIM sched-
ule with N = 50 steps, as implemented in LCM [36]. For
teacher inference, we apply classifier-free guidance (CFG) [16]
augmentation with a weight of w=7.5 in CD as specified in
Eq. (6) and w = 3.5 for the real score network in VSD, The
fake score network and distilled student inference do not employ
CFG. In the VSD loss, we adhere to the update ratio as 5 for
the fake score update over generator update, as suggested in
previous work [74], to ensure training stability. All experiments
are conducted with a batch size of 1 per GPU due to the large
model size and limited VRAM, utilizing 8 GPUs in parallel
for each run. All student models are distilled up to 4× 104

iterations, with moderate model selection. Video samples are

generated with 128 frames at a resolution of 192×320. We
set βCD =0.5 and βFT =1.0 to roughly match the magnitude
of each loss without more fine-grained balance. This simple
strategy is sufficient that the dominance of one loss over others
does not appear throughout our experiments, which verifies the
robust training of our framework at large scale.

To reduce VRAM occupancy on GPUs, we employ gradient
checkpointing and fully sharded data parallel (FSDP) [78], en-
abling sharding of model weights and gradients across GPUs in
a data-parallel fashion. Additionally, we utilize mixed precision
training with the Bfloat16 data type. For fine-tuning with LRMs,
we apply gradient accumulation over 7 steps to stabilize training
due to the small batch size (=1) used.

7.4. Student-Teacher Parameterization
There are two different ways for student-teacher parameteriza-
tion: homogeneous and heterogeneous.

For homogeneous student-teacher parameterization, the net-
works of student and teacher both follow the same variable
prediction, i.e., v-prediction in our setting, with a transforma-
tion:

xθ(xt,t)=
xt+

√
1−ᾱtvθ(xt,t)√

ᾱt+
√
1−ᾱt

(15)

which is proved in Appendix. The student model vθ will be
initialized from teacher model vθ′ at the beginning of distillation.

For heterogeneous student-teacher parameterization, the stu-
dent network can directly predict xθ without leveraging Eq. (15).
For the best usage of teacher model in student distillation, we
adopt the homogeneous parameterization by default.

Experimental comparisons for two different parameteriza-
tions see Appendix 9.4.2.

7.5. Derivations
7.5.1. Proof of Eq. (14)
We start from the forward diffusion process of DDPM [17].
The distribution of one-step diffusion process q(xt|xt−1) =
N (xt;

√
αtxt−1,(1−αt)I) can be equivalently written as:

xt=
√
αtxt−1+

√
1−αtε, ε∼N (0,I) (16)

with t∈ [T ].
By chain rule, we have

xt=
√
ᾱtx0+

√
1−ᾱtε (17)

with ᾱt = Πt
i=1αi. Equivalently, we have xt ∼ q(xt|x0) =

N (xt;
√
ᾱtx0,(1−ᾱt)I). This equation is also used to predict:

x̂0=
1√
ᾱt

xt−
√
1−ᾱt√
ᾱt

ϵθ (18)

which is called the Tweedie’s formula. ϵθ is the approximated
prediction of ε with a parameterized model by θ.



Proof of the denoising function Eq. (14) in reverse diffusion
process is as follows:

xt−1=
√
ᾱt−1x̂0+

√
1−ᾱt−1−σ2

t ϵθ+σtε

=
√
ᾱt−1x̂0+

√
1−ᾱt−1−σ2

t (
1√

1−ᾱt
xt

−
√
ᾱt√

1−ᾱt
x̂0)+σtε

=(
√
ᾱt−1−

√
1−ᾱt−1−σ2

t

√
ᾱt√

1−ᾱt
)x̂0

+

√
1−ᾱt−1√
1−ᾱt

xt+σtε

with the first equation follows the posterior sampling in DDIM
paper [54]. The second is to plug in the Tweedie’s formula. We
have the variance term σ2

t =
(1−αt)(1−ᾱt−1)

1−ᾱt
.

7.5.2. Proof of Eq. (15)
Following the Instaflow objective as Eq. (13), the network di-
rectly predicts vθ, to approximate the target velocity ṽy along
the rectified flow (RF) trajectory, as the difference of the clean
sample and Gaussian noise:

vθ≈ ṽy=x0−ε (19)

Since the RF sample yt is a scaled version of diffusion sample
xt as:

yt=
xt√

ᾱt+
√
1−ᾱt

=γtx0+(1−γt)ε, (20)

γt=

√
ᾱt√

ᾱt+
√
1−ᾱt

, (21)

which satisfies y0=x0.
Given the velocity prediction vθ, we can derive the predic-

tion of original sample xθ as following, by replacing x0 with
prediction xθ in Eq. (19) and (20):

γtxθ=yt−(1−γt)(xθ−vyθ) (22)

xθ=yt+(1−γt)vθ=yt+

√
1−ᾱt√

ᾱt+
√
1−ᾱt

vθ (23)

which concludes the proof.

7.6. Inference Time Analysis
Here, we provide a detailed analysis of the inference time exper-
imental results presented in the main paper, as shown in Sec. 5.4
Tab. 4. Absolute time costs are not reported, as they are influ-
enced by hardware-specific factors and inference configurations
such as batch size and the number of GPUs used. Instead, rela-
tive time consumption is emphasized as a more reliable metric
for cross-configuration comparisons.

Notably, the relationship between diffusion sampling time
and the number of sampling steps is not strictly linear. For

example, the first diffusion sampling step accounts for only
0.33% of the total inference time, making it approximately 6.2
times faster than subsequent steps. This discrepancy is likely
due to the faster inference process for initial Gaussian noise
inputs or the relatively low hardware cache occupation during
early inference stages.

Furthermore, the difference between the total inference time
and the diffusion sampling time includes additional costs for
text preprocessing and encoding, as well as decoding from the
latent space back to the original pixel space. These processes
collectively account for approximately 7% of the total inference
time.

8. Reward Model Fine-Tuning
8.1. Evidence of Fine-tuning Effect
As shown in Fig. 8, the samples generated after reward model
tuning can have a substantial difference from the original train-
ing samples in dataset (left in the figure), for aspects of aesthetic
quality, lighting condition, colors, etc. More such examples are
provided in Sec. 11.2 for comparison of models trained with or
without reward fine-tuning.

Figure 8. Visualization of samples in training dataset (left) and samples
generated with reward tuning using HPSv2 reward (right).

8.2. Direct Reward Gradient
In this section, we discuss in details why the direct reward
gradient methods like ReFL [72] and DRaFT [8], cannot fit into
the memory efficiently.

Take the HPSv2 [67] model as an example. It applies fine-
tuned version of ViT-H/14 variant of CLIP model, which con-
tains 32 image transformer layers and 24 text transformer layers,
each with 16 heads. This constitutes a total of 633 million pa-
rameters. Even with FP16 data type, the model weights will
occupy 1.25 GB memory. Even for a batch size of 1, the in-
put video tensor of size (128,3,192,320) occupies about 6 GB
memory for forward inference only. Backpropagation through
the model will drastically increases the memory cost due to
gradients storage. Moreover, the memory occupancy roughly



scales linearly with the batch size, making it hard to scale up.
PickScore [25] with CLIP-H model has the similar memory
cost in practice. Comparison of parameter numbers and mem-
ory costs for reward models and LRMs is shown in Tab. 1. If
we take sub-sampling in videos to extract frames for reward
optimization, the backward memory (VRAM) cost for different
number of frames H is shown in Tab. 8. It indicates that even
with frame sub-sampling, the memory cost can still be too large
to afford in video model training.

Table 8. Backward memory (VRAM) costs for HPSv2, PickScore
reward models with different numbers (H) of image (192 × 320)
frames.

Model H=12 H=24 H=64 H=128

HPSv2/PickScore 12.373 GB 20.577 GB 48.413 GB >90 GB

Given the diffusion modeling in latent space, direct reward
gradient methods will also need to backpropagate the gradients
from reward model through the large pretrained decoder, this
further increases the burden on memory usage.

8.3. Latent Reward Model For Different Reward
Types

The proposed latent reward model method is compatible with
any type of reward metrics as introduced previously, regardless
of its differentiability and input formats. Here we consider
several types of commonly used reward metrics: image reward,
text-image reward, video reward and text-video reward. For each
category, we provide examples and explain how LRM, with its
diverse architectures, supports these metrics. A summary of this
compatibility is provided in Tab. 9, with further details outlined
below:
• Image reward: I→R.

The LRM is Rl
ϕ(x) : X → R,x= Encode(i),i ∈ I. It has

the image backbone as a 2D convolutional neural network
(CNN).
Examples include LAION aesthetic quality [51], JPEG com-
pressibility [3].

• Text-image reward: C×I→R.
The LRM is Rl

ϕ(x,c) :X ×C→R,x=Encode(i),i∈I. It
has the image backbone as a 2D CNN and text embedding
ec as inputs, with a cross-attention module for mixing image
features ex and text features ec: Softmax(Q(ex)·K(ec)

⊤)·
V(ec).
Examples include human preference score (HPS) [67, 68],
ImageReward [72], PickScore [25].

• Video reward: IH→R where H is the number of frames in
each video.
The LRM can be either (1). Rl

ϕ(x) : X → R, x =
Encode(i), i ∈ I using a 2D CNN image backbone with
average frame reward 1

H

∑H
k=1Rl

ϕ(xk) as video reward or
(2). Rl

ϕ(x1,...,xH) : XH → R using a 3D CNN as video

backbone.
Examples include 7 quality scores in VBench (subject consis-
tency, background consistency, motion smoothness, etc).

• Text-video reward: C×IH→R.
The LRM can be either (1). Rl

ϕ(x,c) : X × C → R us-
ing a 2D CNN image backbone with average frame reward
1
H

∑H
k=1Rl

ϕ(xk,c) as video reward or (2). Rl
ϕ(x1,...,xH,c):

XH×C→R using a 3D CNN as video backbone, with addi-
tional text embedding ec as inputs, and cross-attention for mix-
ing image features ex and text features ec: Softmax(Q(ex)·
K(ec)

⊤)·V(ec).
Examples include ViCLIP [64], VideoScore [15], Intern-
Video2 [65] and 9 semantic score metrics in VBench (object
class, human action, color, etc).

Architecture Details. The image only LRM Rl
ϕ(x) has archi-

tecture detailed in Tab. 10. The text-image LRM Rl
ϕ(x,c) has

architecture detailed in Tab. 11. For video LRM and text-video
LRM, we apply the same architectures with frame averaging in
our experiments.

Discussions. The latent reward model can be utilized in two
ways: it can either be pretrained or trained concurrently with
the student model during fine-tuning, as demonstrated in our
experiments. Furthermore, this approach can also be extended to
fine-tune the teacher model. Alternatively, one could bypass the
reward model in pixel space entirely and directly employ a latent
reward model from the outset. However, we argue that such an
approach is likely to be limited to specific fixed latent spaces
and may lack generalizability across models. This is because
pretrained encoder-decoder models can vary significantly and
often do not share a unified latent space, particularly in existing
image and video models.

8.4. Latent Reward Model Training
Fig. 9 and Fig. 10 show the learning curves of latent reward
models (LRMs) with two original pixel-space rewards HPSv2
and PickScore, respectively, during the distillation process. The
loss for training is VSD+LRM. Left figure displays the MSE
loss for LRM prediction against the ground-truth pixel-space
reward value. Right figure displays the LRM predicted reward
values Rl

ϕ(x0,c) and ground truth reward values R(x0,c) on
training samples from the dataset x0∼X . This demonstrates
that the LRM achieves rapid convergence within 2000–3000
training iterations, even when operating in a significantly lower-
dimensional latent space. The small approximation errors ensure
the effectiveness of fine-tuning with learned LRM.

8.5. Latent Reward Model Fine-tuning
Fig. 11 displays the predicted reward values Rl

ϕ(x̂0,c) with
LRM for generated samples (x̂0∼X ′, by Eq. (15)) during the
distillation process with VSD+LRM loss, for two reward metrics



Table 9. Summary of latent reward models for different pixel-space reward metrics.

Reward Type LRM Function Architecture Examples
Image Reward Rl

ϕ(x):X→R 2D CNN backbone LAION aesthetic [51], JPEG
compressibility [3]

Text-Image Reward Rl
ϕ(x,c):X×C→R 2D CNN + text embedding, cross-attention HPS [67, 68], ImageRe-

ward [72], PickScore [25]
Video Reward Rl

ϕ(x):XH→R 2D CNN with average frame reward, or 3D
CNN backbone

VBench quality scores (subject
consistency, motion smooth-
ness, etc)

Text-Video Reward Rl
ϕ(x,c):XH×C→R 2D CNN with average frame reward, or 3D

CNN backbone, + text embedding, cross-
attention

ViCLIP [64], VideoScore [15],
InternVideo2 [65], VBench se-
mantic scores (object class, hu-
man action, color, etc)

Table 10. Architecture of the image latent reward model

Layer Input Shape Output Shape Kernel Size Stride Padding Number of Parameters

Input (batch, C, H, W)
Conv2d + GroupNorm + SiLU (batch, C, H, W) (batch, 128, 6, 10) 4x4 4 1 24,704
Conv2d + GroupNorm + SiLU (batch, 128, 6, 10) (batch, 128, 3, 5) 3x3 2 1 147,584
AdaptiveAvgPool2d (batch, 128, 3, 5) (batch, 128, 1, 1) - - - 0
Conv2d (batch, 128, 1, 1) (batch, 128, 1, 1) 1x1 1 0 16,512
Flatten (batch, 128, 1, 1) (batch, 128) - - - 0
Linear (batch, 128) (batch, 1) - - - 129

Total Parameters 189,441

Table 11. Architecture of the text-image latent reward model

Layer Input Shape Output Shape Kernel Size / Projection Stride Padding Number of Parameters

Input Image (batch, C, H, W)
Conv2d + GroupNorm + SiLU (batch, C, H, W) (batch, 128, 6, 10) 4x4 4 1 24,704
Conv2d + GroupNorm + SiLU (batch, 128, 6, 10) (batch, 128, 3, 5) 3x3 2 1 147,584
AdaptiveAvgPool2d (batch, 128, 3, 5) (batch, 128, 1, 1) - - - 0
Conv2d (batch, 128, 1, 1) (batch, 128, 1, 1) 1x1 1 0 16,512
Flatten (Image Features) (batch, 128, 1, 1) (batch, 128) - - - 0

Input Text (batch, L, D)
Text MLP (batch, L, D) (batch, 256, 128) - - - 524,544
Average Pooling (Text Features) (batch, 256, 128) (batch, 128) - - - 0

Query Projection (Linear) (batch, 128) (batch, 128) - - - 16,512
Key Projection (Linear) (batch, 128) (batch, 128) - - - 16,512
Value Projection (Linear) (batch, 128) (batch, 128) - - - 16,512
Attention Mechanism (Softmax) (batch, 1, 1) (batch, 1, 1) - - - 0
Final Linear (Output Layer) (batch, 128) (batch, 1) - - - 129

Total Parameters 763,009

HPSv2 and PickScore, respectively. The horizontal dashed lines
are the average reward values of the samples in training dataset.
For HPSv2, the reward values of generated samples surpass the
training data quickly with the LRM fine-tuning. For PickScore,
the reward values of generated samples also gradually increase
to be close to the training data.

8.6. Denoising Diffusion Policy Optimization

Denoising Diffusion Policy Optimization (DDPO) [3] serves as
the baseline for comparison with our proposed LRM method.
DDPO applies the REINFORCE algorithm to optimize the dif-
fusion model by treating the diffusion process as a MDP. It
requires to estimate the log-probabilities for the sample at all dif-
fusion steps, which are then summed over and weighted by the



Figure 9. The learning process of LRM with HPSv2 reward.

Figure 10. The learning process of LRM with PickScore reward.

Figure 11. Latent reward model fine-tuning process under reward
metrics HPSv2 and PickScore.

final reward as the optimization objective. Considering memory
constraints, our method is suited for few-step sampling models
or configurations with gradient truncation along the diffusion
trajectory. In our experiments, memory limitations prevent log-
probability estimation over more than 2 steps. Therefore, we
employ a truncation step of 2 for the student model (i.e., log-
probability estimation at timesteps [249, 499]). This truncation
approach has been validated in previous work [8, 45]. We apply
DDPOSF for online policy gradient in our experiments.

By applying the REINFORCE algorithm on denoising pro-
cess of diffusion models, the DDPOSF algorithm follows the
score function policy gradient:

∇θJ =E[
T∑
t=1

∇θlogpθ(xt−1|xt,c)R(x0,c)] (24)

This is the online version for gradient estimation, which re-
quires to sample xt−1 as well as calculating the probabilities
pθ(xt−1|xt,c) along the sampling process at the same time, such
that the model parameters θ remain the same for sampling and
probability estimation. The update will only take one step to
preserve the online estimation property. Original paper [3] also

proposes another version for offline policy gradient estimation
with importance sampling to allow multi-step updates. As log-
probability logpθ(xt−1|xt,c) needs to be estimated during the
sampling process, we cannot take sampling process as Eq. (14),
but estimating the posterior mean µθ and standard deviation σ
instead:

µθ(xt−1;xt)=
(1−αt)

√
ᾱt

1−ᾱt
xθ+

√
αt(1−ᾱt−1)

1−ᾱt
xt

σt=

√
(1−αt)

1−ᾱt−1

1−ᾱt
(25)

with xθ following Eq. (15). xt−1 will be sampled from
N (µθ(xt−1;xt),σt), with log-probability of the sample as:

logpθ(xt−1|µθ,σ,c)=−1

2

(
(xt−1−µθ)

2

σ2
+log(2πσ2)

)
(26)

The practical procedure of DDPOSF is outlined in Alg. 2. Due
to VRAM memory constraints, we employ the REINFORCE
policy gradient with truncation, allowing gradient tracking for
a maximum of N =2 steps during training. Specifically, for
a student model with a sampling time sequence [T,...,tmin]=
[999,749,499,249], the gradient update steps will only take the
last two steps tn ∈{499,249}, rather than all timesteps. This
truncation is used to estimate the log-probabilities of samples
at tn−1. Here, Dec(·) represents the pretrained video decoder,
while the reward model R operates in the original pixel space.
We use .detach() to indicate a stop-gradient function.

Algorithm 2 DDPO practical procedure.

1: Input: Distilled student model Gθ, datasetD={(c,i)}
2: Output: Fine-tuned student few-step generator Gθ.
3: while train do
4: //Sample from random noise along entire
diffusion trajectory

5: xT←ε∼N (0,I)
6: for tn∈ [T,...,tmin] do
7: Get posterior Gaussian (µθ,σ) with vθ(xtn .detach(),tn)
//Eq. (25)

8: Sample xtn−1∼N (µθ,σI)
9: Estimate logpθ(xtn−1 |xtn ,c) //Eq. (26)

10: end for
11: Get reward R=R(Dec(x̂0),c).detach()
12: //REINFORCE policy gradient with trunca-

tion
13: LDDPOSF =−

∑N
n logpθ(xtn−1 .detach()|xtn ,c)·R

14: Gθ←GradientDescent(θ,LDDPOSF)
15: end while

Learning Curves. The training process of VSD+DDPO for
two reward metrics are shown in Fig. 12. The learning curve
shows the reward values R(x0,c) for generated samples x̂0



Figure 12. Reward model fine-tuning process with VSD+DDPO under
reward models HPSv2 and PickScore.

through iterative denoising along the full diffusion trajectories,
during the fine-tuning process.

The learning curves of DDPO are not directly comparable
to those of the LRM methods shown in Fig. 11. This dif-
ference arises because DDPO samples across the entire diffu-
sion trajectory to obtain the predicted x̂0 for reward evalua-
tion, whereas LRM performs one-step prediction using xθ =
xt+

√
1−ᾱtv

w
θ (xt,t)√

ᾱt+
√
1−ᾱt

, as defined in Eq. (15). Consequently, the
LRM samples tend to be noisier and yield lower rewards during
fine-tuning. A fair comparison involves evaluating the rewards
of the final generated samples after the model fine-tuning, as
presented in Tab. 5 of main paper.

9. Additional Experimental Results
9.1. Diversity Measure Details
For the diversity experiments in main paper Sec. 5.4, the videos
are generated using VBench long prompts, with five videos
produced for each prompt. To evaluate diversity, we randomly
sample 500 prompts, resulting in a total of 2,500 videos. For
assessing video sample diversity within a single prompt, we
define the diversity metric as:

Diversity=
1

K

K∑
k=1

Vendi
(
[fk

1 ,...,f
k
n]
)

(27)

For images, the function Vendi(·) quantifies the diversity of a set
of image features, which can be derived either from raw pixel
vectors or embeddings obtained via the Torchvision Inception v3
model. For videos, we uniformly extract K keyframes with an
equal spacing of 20 frames between consecutive keyframes. We
then calculate Vendi

(
[fk

1 ,...,f
k
n]
)

for the 5 videos corresponding
to the same frame index k. Finally, the diversity measure for a
given prompt is obtained by averaging the Vendi values across
all K frames. The mean and standard deviations of this metric
are computed and reported across all prompts to evaluate video
diversity, as shown in Tab. 3 of main paper.

9.2. Human Evaluation
Human Evaluation Details. Fig. 13 displays the user in-
terface for human evaluation experiments. The four choices
include visual quality, text-video alignment, motion and general

preference, which correspond to the four reported metrics in
Fig. 14. For the pairwise comparison of methods, the videos
are randomly sampled from 4730 videos with 946 VBench long
prompts, with 5 videos generated for each prompt under differ-
ent random seeds. The videos are all displayed at a resolution
of 192×320 with 128 frames for our methods. For a fair com-
parison, videos for the baseline method Gen-3 (768×1280) are
resized to 192×320. Each pair of videos requires approximately
20–30 seconds for evaluation. To prevent positional bias, the
left and right placement of the videos is randomly shuffled for
each evaluation session.

Human Evaluation Results. We conduct 6 rounds of human
evaluation on sampled videos with different methods, comparing
models under the following settings:
• VSD+LRM with HPSv2 as reward model versus VSD

method, to verify the effectiveness of LRM for fine-tuning.
• VSD+LRM versus VSD+DDPO, both with HPSv2 as the

reward model, to compare the LRM and DDPO methods for
reward fine-tuning.

• VSD+LRM with HPSv2 reward versus PickScore reward, to
testify the effectiveness of two reward models.

• VSD+CD+LRM with HPSv2 reward versus Gen-3 model
results, to compare our distilled models with one of the best
present models in Tab. 2 according to VBench.

• VSD+CD+LRM with PickScore as reward model versus the
teacher model.

• VSD+CD+LRM with HPSv2 as reward model versus the
teacher model.
The results for above 6 experiments are summarized in

Fig. 14. Each value indicates the winning rate, with the equal
performance option excluded.

Discussions. In the comparison of VSD+CD+LRM with
PickScore versus the teacher model, human evaluation results
indicate that the student underperforms the teacher in text-video
alignment, motion and general preference, although it has a
much higher score in VBench evaluation (82.37 vs. 80.25) as
Tab. 2. Specifically, the semantic score in VBench is 77.90 for
the student and 73.71 for the teacher, while human evaluation
arrives at the opposite conclusion. This discrepancy highlights a
mismatch between VBench and human evaluation metrics, pos-
ing a challenge in accurately assessing video generation quality.
Our empirical findings suggest that humans tend to reject videos
exhibiting subtle flaws such as shape distortions, unnatural mo-
tions, or other elements that appear less natural or physically
realistic. Humans are highly sensitive to these imperfections,
which influence their preference. By contrast, VBench met-
rics, primarily based on pretrained image understanding models,
are more influenced by factors such as coloring, lighting, aes-
thetics, and imaging quality, while being less sensitive to the
naturalness and physical realism of videos. Measuring physical
realism directly from pixels remains a challenge in general. We



Figure 13. The user interface for human evaluation experiments.

Figure 14. Human evaluation results over four independent metrics: visual quality, text-video alignment, motion and general preference, for six pair
of models.



hypothesize that this difference contributes to the observed di-
vergence between VBench scores and human preferences in our
experiments.

9.3. Reward Overoptimization
We conduct additional experiments with latent reward fine-
tuning on some VBench video-reward metrics, such as dynamic
degree, and image-reward metrics, such as JPEG compressibil-
ity [3]. Fig. 15 shows the progress of the latent reward model
fine-tuning with the dynamic degree metric in VBench. As the
dynamic degree score increases, the generated samples begin
to exhibit a “noise flow” effect that deteriorates the imaging
quality. Despite this, the dynamic degree score can rise as high
as 0.97, compared to the average score of 0.75 in the training
data. These findings highlight the trade-off between optimizing
for specific metrics and preserving overall visual quality. Fig. 16
visualize the training data and generated samples during reward
fine-tuning.

Figure 15. Latent reward model fine-tuning process for dynamic de-
gree.

Figure 16. Reward model fine-tuning with dynamic degree: (left)
ground-truth training samples, (right) generated samples. The noise
level increases as training goes longer (from top to bottom).

As noted in [3], reward-based optimization is prone to overop-
timization, stemming from the divergence between the reward
maximization objective and the distribution matching objective
used during pre-training. In our video generation experiments,
this issue is even more pronounced, with overoptimization some-
times occurring within just a few hundred iterations of fine-
tuning. This rapid onset is likely exacerbated by the sample
variance inherent in stochastic gradient descent when using a
small batch size.

Simply reducing the learning rate or loss weight to mitigate
overoptimization is not an ideal solution, as it significantly
increases the training time and does not effectively address the
core issue. This highlights the need for alternative strategies
to balance reward maximization and distribution preservation
during fine-tuning.

9.4. Additional Ablation Study

9.4.1. VBench Prompt Length

During our evaluation, we observed that the standard prompt
suite in VBench includes very short prompts, such as “a bus,”
which lack context or motion descriptions. This does not align
well with the text-video data distribution used to train our model,
where most images and videos are accompanied by richly de-
tailed captions to enhance the model’s semantic capabilities.
Our findings indicate that pretrained T2V models often exhibit a
bias toward prompt length, performing better with longer, more
descriptive prompts. To address this, VBench incorporates the
prompt optimization technique introduced in CogVideoX [73],
which utilizes GPT-4o [1] to extend the short prompts into more
descriptive “long prompts” while preserving their original mean-
ings. We refer to these as “long prompts”, distinguishing them
from the original “short prompts”.

The VBench score comparison for long prompts and short
prompts are summarized in Tab. 15. The evaluation includes
five models:

• Teacher model
• VSD model with 1-step inference (VSD1)
• VSD model with 4-step inference (VSD4)
• Model distilled with VSD and CD joint loss, using CD de-

noising step m=1 (VSD4+CD1)
• Model distilled with VSD and LRM joint loss, using

PickScore as reward function (VSD4+LRM)

Each pair of comparison is conducted using exactly the same
model and evaluation protocol, differing only in prompt lengths.
Most models achieve higher total scores when short prompts are
replaced with long prompts, except for VSD1, which verifies our
hypothesis on prompt length bias. According to this observation,
we adopt the long prompt suite by default for VBench score
evaluation. Full results of short-prompt VBench scores refer to
Tab. 19. Sample visualization refers to Sec. 11.5.



9.4.2. Homogeneous vs. Heterogeneous Parameteriza-
tion

For the given teacher model vθ′ with v-prediction, we compare
the student models with heterogeneous xθ and homogeneous vθ
parameterization from the teacher, under the VSD+CD loss. The
student model weights are initialized from the teacher model for
both configurations. The evaluated VBench results are shown
in Tab. 14. The homogeneous parameterization leads to slightly
better performance over the heterogeneous parameterization and
even the teacher model. Full results for VBench scores refer to
Table 13.

Table 12. Comparison of VBench scores across models with different
inference steps (values in percentage).

Model Teacher Student (VSD)

Inference Steps 50 1 2 4

Subject Consistency 83.99 90.09 92.27 93.26
Background Consistency 93.78 94.39 95.17 95.82
Temporal Flickering 96.42 96.79 95.73 95.79
Motion Smoothness 98.09 97.72 96.96 97.48
Dynamic Degree 99.44 86.39 93.33 58.61
Aesthetic Quality 61.21 60.26 61.55 61.34
Imaging Quality 63.87 61.82 66.09 68.21
Object Class 85.79 90.03 87.86 94.72
Multiple Objects 52.59 67.71 58.06 69.24
Human Action 99.60 98.40 99.60 99.80
Color 77.00 74.43 65.44 71.81
Spatial Relationship 51.40 69.17 63.96 64.80
Scene 49.99 49.74 52.21 51.89
Temporal Style 26.45 26.03 25.19 24.93
Appearance Style 24.83 23.90 23.77 24.31
Overall Consistency 27.89 27.14 26.91 26.38

Quality Score 81.89 81.61 82.71 80.95
Semantic Score 73.71 76.66 73.86 76.61
Total Score 80.25 80.62 80.94 80.08

9.5. Complete VBench Scores
The full version of main paper Tab. 2 is Tab. 16. The breakdown
VBench scores and reward scores for main paper Tab. 5 are
shown in Tab. 18 and Tab. 17. The breakdown VBench scores
for main paper Tab. 6 are shown in Tab. 12. The breakdown
VBench scores for main paper Tab. 7 and Tab. 14 are shown in
Tab. 13. VSD4 indicates the VSD loss for 4-step inference of
the student, as our default setting. CD1 and CD5 indicate the
CD loss with denoising steps m=1 and m=5, respectively.

Table 13. Comparison of VBench scores for VSD+CD methods (values
in percentage).

Metric Teacher VSD4+CD1 VSD4+CD5 VSD4+CD5

Parameterization vθ vθ vθ xθ

Subject Consistency 83.99 86.36 86.37 85.47
Background Consistency 93.78 94.84 94.70 93.37
Temporal Flickering 96.42 95.60 96.48 96.51
Motion Smoothness 98.09 97.70 98.04 98.05
Dynamic Degree 99.44 87.50 90.28 95.28
Aesthetic Quality 61.21 60.16 62.16 60.95
Imaging Quality 63.87 62.85 65.24 63.39
Object Class 85.79 85.84 89.79 87.07
Multiple Objects 52.59 52.53 63.86 54.51
Human Action 99.60 99.40 99.20 99.60
Color 77.00 64.02 71.38 69.35
Spatial Relationship 51.40 55.34 59.50 54.89
Scene 49.99 49.29 49.49 53.85
Temporal Style 26.45 25.82 25.30 26.04
Appearance Style 24.83 23.22 23.81 24.09
Overall Consistency 27.89 27.24 27.08 27.73

Quality Score 81.89 80.75 82.16 81.65
Semantic Score 73.71 71.57 74.58 73.66
Total Score 80.25 78.92 80.65 80.05

Table 14. Comparison of different student-teacher parameterization for
distillation with VSD+CD using VBench (long prompt).

Model Teacher Student

Parameterization vθ Heterogeneous (xθ) Homogeneous (vθ)

Quality Score 81.89 81.65 82.16
Semantic Score 73.71 73.66 74.58
Total Score 80.25 80.05 80.65



Table 15. Effects on VBench scores with different prompt lengths: “S” for short prompts and “L” for long prompts.

Model Teacher VSD1 VSD4 VSD4+CD1 VSD4+LRM

Prompt S L S L S L S L S L

Quality 81.50 81.89 81.60 81.61 80.75 80.95 79.27 80.75 82.64 84.01
Semantic 74.64 73.71 77.10 76.66 76.67 76.61 67.52 71.57 60.04 72.51
Total 80.13 80.25↑ 80.70 80.62↓ 79.94 80.08↑ 76.92 78.92↑ 78.12 81.71↑

Table 16. Comparison of VBench scores for different models. Our DOLLAR method is VSD+CD+LRM.

Model Pika Gen-2 Gen-3 Kling T2V-Turbo
(VC2)

T2V-Turbo
(Data Juicer)

Teacher Our DOLLAR
(PickScore)

Our DOLLAR
(HPSv2)

Subject Consistency 96.76 97.61 97.10 98.33 96.28 97.92 83.99 93.77 92.57
Background Consistency 98.95 97.61 96.62 97.60 97.02 99.27 93.78 96.80 96.14
Temporal Flickering 99.77 99.56 98.61 99.30 97.48 98.14 96.42 96.30 97.48
Motion Smoothness 99.51 99.58 99.23 99.40 97.34 97.77 98.09 97.76 98.59
Dynamic Degree 37.22 18.89 60.14 61.21 49.17 38.89 99.44 75.83 81.67
Aesthetic Quality 63.15 66.96 63.34 46.94 63.04 67.39 61.21 63.80 63.14
Imaging Quality 62.33 67.42 66.82 65.62 72.49 70.41 63.87 69.40 65.61
Object Class 87.45 90.92 87.81 87.24 93.96 96.44 85.79 91.63 93.84
Multiple Objects 46.69 55.47 53.64 68.05 54.65 64.51 52.59 69.71 72.21
Human Action 88.00 89.20 96.40 93.40 95.20 95.40 99.60 99.00 99.00
Color 85.31 89.49 80.90 89.90 89.90 95.51 77.00 77.95 74.78
Spatial Relationship 65.65 66.91 65.09 73.03 38.67 47.17 51.40 68.56 68.35
Scene 44.80 48.91 54.57 50.86 55.58 57.30 49.99 55.06 52.72
Temporal Style 24.44 24.12 24.71 24.17 25.51 25.55 26.45 24.64 25.23
Appearance Style 21.89 24.31 24.86 19.62 24.42 26.82 24.83 24.45 23.50
Overall Consistency 25.47 26.17 26.69 26.42 28.16 29.25 27.89 26.93 26.85

Quality Score 82.68 82.47 84.11 83.39 82.57 83.38 81.89 83.49 83.83
Semantic Score 71.26 73.03 75.17 75.68 72.57 79.13 73.71 77.90 77.51
Total Score 80.40 80.58 82.32 81.85 81.01 82.53 80.25 82.37 82.57

Table 17. Comparison of LRM with DDPO using VBench (long prompt) and fine-tuning reward metrics HPSv2 and PickScore.

Reward Model PickScore HPSv2

Method VSD+DDPO VSD+LRM VSD+CD+LRM VSD+DDPO VSD+LRM VSD+CD+LRM

Quality Score 82.99 84.01 83.49 82.97 83.53 83.83
Semantic Score 77.26 72.51 77.90 74.56 75.67 77.51
Total Score 81.84 81.71 82.37 81.29 81.96 82.57
Reward 0.207±0.011 0.207±0.011 0.210±0.011 0.271±0.027 0.276±0.028 0.277±0.029



Table 18. Comparison of VBench scores for DDPO and LRM methods (values in percentage).

Model Teacher VSD4 VSD4+DDPO
(PickScore)

VSD4+LRM
(PickScore)

VSD4+DDPO
(HPSv2)

VSD4+LRM
(HPSv2)

Subject Consistency 83.99 93.26 95.26 94.34 93.27 91.99
Background Consistency 93.78 95.82 96.21 96.08 96.22 96.93
Temporal Flickering 96.42 95.79 96.56 95.85 96.64 96.80
Motion Smoothness 98.09 97.48 96.45 97.30 97.56 97.39
Dynamic Degree 99.44 58.61 85.83 94.44 81.67 85.56
Aesthetic Quality 61.21 61.34 61.85 61.84 61.66 63.14
Imaging Quality 63.87 68.21 65.98 68.49 66.39 67.35
Object Class 85.79 94.72 94.29 87.28 91.91 90.65
Multiple Objects 52.59 69.24 72.33 55.11 65.32 60.34
Human Action 99.60 99.80 98.00 98.80 98.20 99.40
Color 77.00 71.81 76.28 76.12 70.00 73.69
Spatial Relationship 51.40 64.80 65.19 54.25 61.75 63.81
Scene 49.99 51.89 52.60 49.17 49.65 53.43
Temporal Style 26.45 24.93 25.00 24.39 24.53 25.02
Appearance Style 24.83 24.31 23.99 23.68 23.66 24.53
Overall Consistency 27.89 26.38 26.43 25.97 26.67 26.76

Quality Score 81.89 80.95 82.99 84.01 82.97 83.53
Semantic Score 73.71 76.61 77.26 72.51 74.56 75.67
Total Score 80.25 80.08 81.84 81.71 81.29 81.96

Table 19. VBench scores with short prompts (values in percentage) for some models.

Model Teacher VSD1 VSD4 VSD4+LRM
(PickScore)

VSD4+LRM
(HPSv2)

VSD4+CD1

Subject Consistency 84.80 89.39 92.98 94.13 91.72 84.83
Background Consistency 94.10 94.91 96.12 95.14 96.34 93.87
Temporal Flickering 96.12 96.96 96.55 95.29 96.50 94.84
Motion Smoothness 97.99 97.57 97.12 96.77 96.65 97.08
Dynamic Degree 97.78 91.94 61.39 93.06 94.17 93.61
Aesthetic Quality 57.74 57.33 58.24 58.08 60.20 55.32
Imaging Quality 65.41 62.10 67.79 68.97 67.12 62.28
Object Class 88.45 89.89 93.12 57.34 92.67 80.54
Multiple Objects 56.54 73.86 72.29 38.43 66.45 47.90
Human Action 99.60 98.00 98.20 92.00 96.60 96.60
Color 77.75 86.19 79.55 78.36 82.90 67.55
Spatial Relationship 51.21 70.13 70.09 44.49 63.32 55.34
Scene 50.89 35.32 42.95 13.31 36.90 29.53
Temporal Style 26.52 26.21 24.91 23.03 25.11 25.02
Appearance Style 24.76 23.93 23.87 23.47 24.45 23.03
Overall Consistency 27.96 28.06 26.42 24.81 27.05 27.13

Quality Score 81.50 81.60 80.75 82.64 83.03 79.27
Semantic Score 74.64 77.10 76.67 60.04 75.08 67.52
Total Score 80.13 80.70 79.94 78.12 81.44 76.92



10. Challenges and Discussions
Long Prompt Bias. The experiments in Sec. 9.4.1 show that,
current models perform better for long and more descriptive
prompt, which is inherited from the teacher model. The reason
is hypothesized to be the well-captioned text-to-video training
dataset, which emphasize detailed descriptions. With longer
prompts, the text-video alignment, understanding of object re-
lationships, and depiction of motion are generally more robust
and accurate. To address this issue, the performance gap with
short prompts could be reduced by incorporating more short-
prompt datasets during training or fine-tuning. Additional re-
sults illustrating this phenomenon are provided in Fig. 30, with
corresponding video samples available on the website.

Reward Overoptimization. As demontrated by experiments
in Sec. 9.3, the reward overoptimization issue sometimes hap-
pens for some certain reward metrics for both LRM and DDPO
methods. To address this issue, early stopping or checkpoint
selection can be one rescue. Another approach involves incorpo-
rating additional explicit regularization to constrain the student
model with the teacher model during the reward fine-tuning
process, and implicit regularization like diffusion loss or VSD
loss may not be sufficient for this purpose. Beyond early stop-
ping and careful tuning of the loss coefficients between data
modeling and reward tuning, adopting the memoryless noise
schedule [9] shows promise in steering the model toward cor-
rectly converging to tilted distributions. Further investigation
into these strategies and their effectiveness in resolving overop-
timization remains an important direction for future work.

Diversity. From the Vendi score diversity measure of gen-
erated samples in main paper, we verifies the effectiveness of
incorporating additional CD loss for improving the sample diver-
sity. However, both qualitative comparisons and visual inspec-
tions reveal that a diversity gap remains between the distilled
student models and the teacher model.

While prior research predominantly emphasizes sample qual-
ity, the diversity of T2V models is crucial for practical applica-
tions, where diverse outputs are often necessary. This aspect of
diversity remains underrepresented even in the comprehensive
VBench evaluation, highlighting an area that warrants further
attention and improvement.

Misalignment in Evaluation. As discussed in Sec. 9.2, our
experiments reveal a misalignment between VBench scores
and human evaluations for videos generated using the same
set of prompts. Humans may be more sensitive to unnatural
flaws in videos, which can influence their preferences differently
from the automatic evaluation metrics used in VBench. This
discrepancy highlights the difficulty of aligning weighted score
metrics with human preferences. As a result, models that achieve
higher VBench scores may not necessarily be preferred by

humans, and vice versa. Given the inherent complexity of video
content, relying on a single or limited set of metrics may fail
to fully capture video quality. This presents a challenge for the
research community to develop more comprehensive evaluation
protocols that are better aligned with human preferences.

11. Visualization
11.1. More Qualitative Results
More qualitative results of our methods (VSD+CD+LRM) are
displayed in Fig. 17, 18 and 19.

Visual comparison of our methods with baselines in Tab. 2
for generated samples with the same prompt is shown in Fig. 20
and 21. For fair of comparison, we visualize all sampled frames
with resolution 192× 320 as the typical sample size of our
models.

11.2. Comparison of Reward Model Fine-tuning
As additional results for Sec. 5.4, we provide visualization of
samples with different reward model fine-tuning methods in
Fig. 22 and 23. It compares:
• VSD;
• VSD with DDPO fine-tuning, using reward PickScore;
• VSD with DDPO fine-tuning, using reward HPSv2;
• VSD with LRM fine-tuning, using reward PickScore;
• VSD with LRM fine-tuning, using reward HPSv2.
All results are for 4-steps sampling after the distillation process.

11.3. Inference Steps
We provide visualization of samples with different sampling
steps for the VSD method, as shown in Fig. 24 and 25. During
the distillation process, the sampling steps is set to be 1, 2, 4,
and at inference time it follows the same step number as in
distillation. From visual inspection, it is clear to show that a
larger number of sampling steps usually leads to better perfor-
mances, which may not be well captured by the slight difference
of VBench scores. As an example, in Fig. 25, the “astronaut”
video with 1-step inference looks blurry but the 4-step sample
has more sharper details and realistic surroundings. It should be
clear to see that increasing the inference steps indeed improves
the sample performances.

Fig. 26 visualizes the samples with 4-step teacher DDIM
sampling, and with only CD loss for student distillation, as
typically used in previous work like LCM and VideoLCM. Few-
step teacher sampling without any distillation cannot generate
high-quality samples. CD loss only tends to generate overly
smoothed samples.

11.4. Diversity
For visualizing the difference of sample diversity across different
methods, we provide sample visualization, including videos in
Fig. 27 for comparing our DOLLAR method with DMD, Fig. 28
and Fig. 29 with extracted video frames for several models after
training:



• VSD for 4-step sampling;
• VSD with CD for 4-step sampling and m=5 for CD;
• Teacher model with 50 steps DDIM sampling.
The CD improves the sample diversity from both visual inspec-
tion and the quantitative measurement with Vendi score as in
Tab. 3 of the main paper.

11.5. Prompt Length
As additional results to Sec. 9.4.1, we visualize samples with
long descriptive prompts and corresponding short prompts in
Fig. 30. It further verifies the hypothesis that the trained models
tend to align the videos better with longer and more descriptive
prompts. According to this results, the VBench evaluation in
our experiments takes the long prompts for video generation by
default.

11.6. Sampling with Various Styles and Motions
The distilled student models with the proposed methods demon-
strate great performances over various styles in prompts, includ-
ing different artistic styles like Ukiyo style, cuberpunk, surreal-
ism, pixel art, oil painting, watercolor painting, black and white,
etc. It also supports different camera motions in the video, like
pan left, pan right, tilt down, tilt up, zoom in, racking focus, etc.
The visualization for generated samples with various styles and
camera motions is shown in Fig. 31 and Fig. 32.



Figure 17. More qualitative results of our method (VSD+CD+LRM). Five frames are displayed for each video (frame index: 0, 30, 60, 90, 120).



Figure 18. More qualitative results of our method (VSD+CD+LRM). Five frames are displayed for each video (frame index: 0, 30, 60, 90, 120).



Figure 19. More qualitative results of our method (VSD+CD+LRM). Five frames are displayed for each video (frame index: 0, 30, 60, 90, 120).



Figure 20. Comparison of our method (VSD+CD+LRM) against several baselines. Five frames are displayed for each video (frame index: 0, 30, 60,
90, 120). Videos from all baseline methods are transformed into 192×320 resolution for fair comparison, including Gen-2, Gen3, Kling, Pika. Our
model shows superior performances in text-video alignment, motions, visual quality and fidelity.



Figure 21. Comparison of our method (VSD+CD+LRM) against several baselines. Five frames are displayed for each video (frame index: 0, 30, 60,
90, 120). Videos from all baseline methods are transformed into 192×320 resolution for fair comparison, including Gen-2, Gen3, Kling, Pika. Our
model shows superior performances in text-video alignment, motions, visual quality and fidelity.



A slow cinematic push in on an ostrich standing in a 1980s kitchen.
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A breathtaking aurora dances across the night sky, vibrant green and purple hues illuminating snow-covered mountains and a
serene lake.
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Figure 22. Visualization of video samples using different methods: VSD, VSD+DDPO(PickScore), VSD+DDPO(HPSv2), VSD+LRM(PickScore),
VSD+LRM(HPSv2). Five frames are displayed for each video (frame index: 0, 30, 60, 90, 120).



An older man playing piano, lit from the side.
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Handheld camera moving fast, flashlight light, in a white old wall in a old alley at night a black graffiti that spells “Cool Baby”.
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Figure 23. Visualization of video samples using different methods: VSD, VSD+DDPO(PickScore), VSD+DDPO(HPSv2), VSD+LRM(PickScore),
VSD+LRM(HPSv2). Five frames are displayed for each video (frame index: 0, 30, 60, 90, 120).



FPV moving through a forest to an abandoned house to ocean waves.
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A middle-aged sad bald man becomes happy as a wig of curly hair and sunglasses fall suddenly on his head.
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Figure 24. VSD 1, 2, 4 steps, teacher with 50 steps. Five frames are displayed for each video (frame index: 0, 30, 60, 90, 120).



An astronaut running through an alley in Rio de Janeiro.
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An older man playing piano, lit from the side.
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Figure 25. VSD 1, 2, 4 steps, teacher with 50 steps. Five frames are displayed for each video (frame index: 0, 30, 60, 90, 120).
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Figure 26. Sample results of 4 steps DDIM by the teacher model and 4 steps student model with CD loss. One frame for each video. Same five
prompts as previous results: (from left to right) (1). A slow cinematic push in on an ostrich standing in a 1980s kitchen. (2). A breathtaking aurora
dances across the night sky, vibrant green and purple hues illuminating snow-covered mountains and a serene lake. (3). Handheld camera moving
fast, flashlight light, in a white old wall in a old alley at night a black graffiti that spells “Cool Baby”. (4). FPV moving through a forest to an
abandoned house to ocean waves. (5). A middle-aged sad bald man becomes happy as a wig of curly hair and sunglasses fall suddenly on his head.

Figure 27. [Click to play] Mode collapse issue: By incorporating variational score distillation, consistency distillation, and latent reward fine-tuning,
our DOLLAR method (top) with 4 inference steps increases sample diversity and fidelity, while DMD (bottom) [75] suffers from mode collapse
issue. Three videos with same prompt and different random seeds are compared. The prompt is “A middle-aged sad bald man becomes happy as a
wig of curly hair and sunglasses fall suddenly on his head”. You can [click] each sample to play the video (20 extracted frames) in Adobe Acrobat.



Close-up of an Asian man with a hopeful expression. He’s wearing a knit navy sweater and leaning forward slightly. His eyes are
wide and focused, giving a sense of urgency or excitement. Soft glowing light illuminates his face, highlighting his features and the
texture of his skin. The mood is hopeful, as if he’s in the middle of an exciting conversation or reacting to something surprising.
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An older man playing piano, lit from the side.
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A middle-aged sad bald man becomes happy as a wig of curly hair and sunglasses fall suddenly on his head.
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Figure 28. Diversity: VSD (top line), VSD+CD (middle line), teacher (bottom line), one frame from each video (5 videos).



A slow cinematic push in on an ostrich standing in a 1980s kitchen.
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Handheld camera moving fast, flashlight light, in a white old wall in a old alley at night a black graffiti that spells “Cool Baby”.
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Figure 29. Diversity: VSD (top line), VSD+CD (middle line), teacher (bottom line), one frame from each video (5 videos).



Long prompt: A sleek, modern laptop, its screen displaying a vibrant, paused scene, sits on a minimalist wooden desk. The room
is bathed in soft, natural light filtering through sheer curtains, casting gentle shadows. The laptop’s keyboard is mid-illumination,
with a faint glow emanating from the keys, suggesting a moment frozen in time. Dust particles are suspended in the air, caught
in the light, adding to the stillness. A steaming cup of coffee beside the laptop remains untouched, with wisps of steam frozen in
mid-air. The scene captures a serene, almost magical pause in an otherwise bustling workspace.

Short prompt: a laptop, frozen in time.

Long prompt: A serene nursery bathed in soft morning light reveals a cozy crib with pastel-colored bedding. A baby, dressed in
a cute onesie adorned with tiny stars, stirs gently. The camera captures the baby’s delicate eyelashes fluttering open, revealing
curious, sleepy eyes. The baby stretches tiny arms and legs, yawning adorably. A mobile with soft, plush animals gently spins
above, casting playful shadows. The room is filled with the soft hum of a lullaby, creating a peaceful atmosphere as the baby slowly
awakens, ready to greet the new day with innocent wonder.

Short prompt: A person is baby waking up.

Long prompt: A single, perfectly ripe pear rests on a rustic wooden table, its golden-green skin glistening under soft, natural
light. The pear’s surface is dotted with tiny, delicate freckles, and its curved stem casts a gentle shadow. The background is a
blurred, warm-toned kitchen scene, with hints of vintage decor and a window letting in a soft, diffused glow. The stillness of the
frame captures the pear’s natural beauty and simplicity, evoking a sense of calm and timelessness.

Short prompt: In a still frame, a pear.

Figure 30. Comparison of sampled videos for VBench long and short prompts. Five frames are displayed for each video (frame index: 0, 30, 60, 90,
120).



A beautiful coastal beach in spring, waves lapping on sand by Hokusai, in the style of Ukiyo

A beautiful coastal beach in spring, waves lapping on sand, in cyberpunk style

A beautiful coastal beach in spring, waves lapping on sand, oil painting

A beautiful coastal beach in spring, waves lapping on sand, pixel art

A beautiful coastal beach in spring, waves lapping on sand, surrealism style

A beautiful coastal beach in spring, waves lapping on sand, black and white

A beautiful coastal beach in spring, waves lapping on sand, watercolor painting

Figure 31. Video generation with diverse styles, using prompts from VBench. Five frames are extracted uniformly from one video for each prompt
(with frame index: 0, 30, 60, 90, 120).



A beautiful coastal beach in spring, waves lapping on sand, pan left

A beautiful coastal beach in spring, waves lapping on sand, tilt down

A beautiful coastal beach in spring, waves lapping on sand, tilt up

A beautiful coastal beach in spring, waves lapping on sand, zoom in

A beautiful coastal beach in spring, waves lapping on sand, racking focus

A beautiful coastal beach in spring, waves lapping on sand, in super slow motion

Figure 32. Video generation with diverse camera motions, using prompts from VBench. Five frames are extracted uniformly from one video for
each prompt (with frame index: 0, 30, 60, 90, 120).


	DOLLAR Method Details
	Pseudo-code
	Diffusion Model Training and Inference
	Implementation Details
	Student-Teacher Parameterization
	Derivations
	Inference Time Analysis

	Reward Model Fine-Tuning
	Evidence of Fine-tuning Effect
	Direct Reward Gradient
	Latent Reward Model For Different Reward Types
	Latent Reward Model Training
	Latent Reward Model Fine-tuning
	Denoising Diffusion Policy Optimization

	Additional Experimental Results
	Diversity Measure Details
	Human Evaluation
	Reward Overoptimization
	Additional Ablation Study
	Complete VBench Scores

	Challenges and Discussions
	Visualization
	More Qualitative Results
	Comparison of Reward Model Fine-tuning
	Inference Steps
	Diversity
	Prompt Length
	Sampling with Various Styles and Motions


	anm9: 
	9.19: 
	9.18: 
	9.17: 
	9.16: 
	9.15: 
	9.14: 
	9.13: 
	9.12: 
	9.11: 
	9.10: 
	9.9: 
	9.8: 
	9.7: 
	9.6: 
	9.5: 
	9.4: 
	9.3: 
	9.2: 
	9.1: 
	9.0: 
	anm8: 
	8.19: 
	8.18: 
	8.17: 
	8.16: 
	8.15: 
	8.14: 
	8.13: 
	8.12: 
	8.11: 
	8.10: 
	8.9: 
	8.8: 
	8.7: 
	8.6: 
	8.5: 
	8.4: 
	8.3: 
	8.2: 
	8.1: 
	8.0: 
	anm7: 
	7.19: 
	7.18: 
	7.17: 
	7.16: 
	7.15: 
	7.14: 
	7.13: 
	7.12: 
	7.11: 
	7.10: 
	7.9: 
	7.8: 
	7.7: 
	7.6: 
	7.5: 
	7.4: 
	7.3: 
	7.2: 
	7.1: 
	7.0: 
	anm6: 
	6.19: 
	6.18: 
	6.17: 
	6.16: 
	6.15: 
	6.14: 
	6.13: 
	6.12: 
	6.11: 
	6.10: 
	6.9: 
	6.8: 
	6.7: 
	6.6: 
	6.5: 
	6.4: 
	6.3: 
	6.2: 
	6.1: 
	6.0: 
	anm5: 
	5.19: 
	5.18: 
	5.17: 
	5.16: 
	5.15: 
	5.14: 
	5.13: 
	5.12: 
	5.11: 
	5.10: 
	5.9: 
	5.8: 
	5.7: 
	5.6: 
	5.5: 
	5.4: 
	5.3: 
	5.2: 
	5.1: 
	5.0: 
	anm4: 
	4.19: 
	4.18: 
	4.17: 
	4.16: 
	4.15: 
	4.14: 
	4.13: 
	4.12: 
	4.11: 
	4.10: 
	4.9: 
	4.8: 
	4.7: 
	4.6: 
	4.5: 
	4.4: 
	4.3: 
	4.2: 
	4.1: 
	4.0: 
	pbs@ARFix@12: 
	pbs@ARFix@13: 
	pbs@ARFix@14: 
	pbs@ARFix@15: 
	pbs@ARFix@16: 
	pbs@ARFix@17: 
	pbs@ARFix@18: 
	pbs@ARFix@19: 
	pbs@ARFix@20: 
	pbs@ARFix@21: 
	pbs@ARFix@22: 
	pbs@ARFix@23: 
	pbs@ARFix@24: 
	pbs@ARFix@25: 
	pbs@ARFix@26: 
	pbs@ARFix@27: 
	pbs@ARFix@28: 
	pbs@ARFix@29: 
	pbs@ARFix@30: 
	pbs@ARFix@31: 
	pbs@ARFix@32: 
	pbs@ARFix@33: 
	pbs@ARFix@34: 
	pbs@ARFix@35: 
	pbs@ARFix@36: 
	pbs@ARFix@37: 
	pbs@ARFix@38: 
	pbs@ARFix@39: 
	pbs@ARFix@40: 


