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A. Limitations
A.1. Sensitivity to Noise Variation
As illustrated in Fig. 4, although our method achieves supe-
rior performance, its results exhibit some sensitivity to noise
ϵtest during inference. Recent studies [21] have suggested
that predicting the initial state zx during the reverse diffu-
sion process yields more stable results compared to direct
noise (ϵ) prediction, especially under varying noise condi-
tions. As part of future work, we plan to explore this refine-
ment to enhance the robustness against noise fluctuations.
Predicting zx. Our model exhibits somewhat sensitivity to
noise during inference. To address this, we additionally ex-
perimented with predicting zx instead of noise ϵ. As shown
in Fig. 5, noise-induced fluctuation is reduced by 5×, with
minimal performance drop and SOTA-level accuracy main-
tained.

B. Additional Discussions on Results
B.1. Results on More Complex Datasets
We provide additional results on Kinetics-200 and Kinetics-
400 datasets [28] in Table 7 and Table 8. For consistency,
we use the same skeleton encoder and same text prompts
as PURLS [79]. Notably, despite using only a single text
prompt per action, our method achieves state-of-the-art per-
formance across all data splits, outperforming prior ap-
proaches that leverage multiple text prompts.

B.2. More Comparison with BSZSL
We did additional comparison with BSZSL [40] that utilizes
both text and RGB modalities. Without relying on RGB
input, our TDSM in the Table 9 outperforms BSZSL in 3
out of 4 splits across NTU-60 and NTU-120 datasets.

B.3. Analysis of Split Settings
Table 2 presents the average performance of our model
across split 1, split 2, and split 3 on the SMIE [77] bench-
mark. For a more detailed analysis, Table 10 reports the
performance for each individual split. Notably, in the NTU-
60 55/5 split, our TDSM achieves the highest performance
for split 2. The unseen classes in this split—“wear a shoe”,
“put on a hat/cap”, “kicking something”, “nausea or vom-
iting condition”, and “kicking other person”—exhibit clear
and distinct motion patterns. For example, “wear a shoe”
involves downward torso motion, “put on a hat/cap” fea-
tures upward hand movements, “kicking something” em-

phasizes significant leg activity, “nausea or vomiting con-
dition” depicts upper body contraction, and “kicking other
person” is unique as it involves two skeletons interacting.
These distinct characteristics make our TDSM easier to dis-
tinguish the classes, leading to higher performance. Fig. 6
illustrates this trend through the confusion matrix and per-
class accuracy visualization, highlighting the clear separa-
bility of these actions.

In contrast, our TDSM shows relatively lower perfor-
mance for the split 1 in the PKU-MMD 46/5 split, although
the split 1 contains fewer unseen classes (“falling”, “make
a phone call/answer phone”, “put on a hat/cap”, “taking a
selfie”, and “wear on glasses”). Except for “falling”, the
remaining classes involve similar upward hand movements
and interactions with objects (e.g., phones, hats, glasses)
that are not explicitly visible in skeleton data. This lack of
contextual information makes it significantly harder to dis-
tinguish these actions, resulting in degraded performance.
As visualized in Fig. 7, the confusion matrix and per-class
accuracy further reveal the challenge of separating actions
with overlapping motion patterns, emphasizing the limita-
tions of skeleton-only data when distinguishing semanti-
cally similar actions. These observations underscore the
importance of distinct motion patterns in unseen classes for
robust zero-shot recognition.

B.4. Potential Training-Inference Mismatch
Our TDSM adopts an one-step inference framework, where
both training and inference are consistently performed with
the same total number of timesteps T . Empirically, we
found that performing one-step inference at ttest = T/2
(e.g., ttest = 50 when T = 100) provides the best trade-off
between noise and structure. So, no distributional mismatch
exists b/w training and inference in our setting.

B.5. More Explanation about Text Feature
Compared to PURLS [79] where local textual features are
obtained from six separate body-part-specific descriptions,
our TDSM extracts both global and local features from a
single unified sentence, yielding and zg and zl which are
described in details.

C. Discussion on ZSAR Methods
The key contribution of our work lies not in each in-
dividual component (e.g., DiT architecture, loss function
but in proposing a new framework for ZSAR that effec-
tively bridges the cross-modality gap between skeleton and
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Figure 5. Effect of varying inference timesteps ttest across multiple datasets. Each plot shows the top-1 accuracy trend on the NTU-60 and
NTU-120 datasets under different splits. The solid red line represents the average accuracy of our method, with the shaded orange area
indicating the variation in accuracy across 10 different random Gaussian noise instances. Dashed blue line corresponds to the second-best
method in each benchmark.
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Figure 6. Confusion matrix and per-class top-1 accuracy visualization for NTU-60 55/5 Split 2.

Methods
Kinetics-200 (Acc, %)

180/20 split 160/40 split 140/60 split 120/80 split
ReViSE [26] 24.95 13.28 8.14 6.23
DeViSE [18] 22.22 12.32 7.97 5.65
PURLS [79] (1 text) 25.96 15.85 10.23 7.77
PURLS [79] (7 text) 32.22 22.56 12.01 11.75
TDSM (1 text) 38.18 24.43 15.28 13.09

Table 7. Top-1 accuracy results of TDSM evaluated on the
Kinetics-200 dataset under the PURLS [79] benchmark.

Methods
Kinetics-400 (Acc, %)

360/40 split 320/80 split 300/100 split 280/120 split
ReViSE [26] 20.84 11.82 9.49 8.23
DeViSE [18] 18.37 10.23 9.47 8.34
PURLS [79] (1 text) 22.50 15.08 11.44 11.03
PURLS [79] (7 text) 34.51 24.32 16.99 14.28
TDSM (1 text) 38.92 26.24 18.45 16.10

Table 8. Top-1 accuracy results of TDSM evaluated on the
Kinetics-400 dataset under the PURLS [79] benchmark.

text. Previous VAE-based or contrastive learning(CL)-
based methods attempt direct alignment between skeleton
and text latents, but the inherent large modality gap lim-
its their effectiveness (Sec. 2.1). To address this, we use a
diffusion process—already shown to be powerful in image-
text alignment—and adapt it for a discriminative zero-

Methods
Modality NTU-60 (Acc, %) NTU-120 (Acc, %)

Text RGB 55/5 split 48/12 split 110/10 split 96/24 split
BSZSL [40] ✓ ✓ 83.04 52.96 77.69 56.12
TDSM ✓ 86.49 56.03 74.15 65.06

Table 9. Top-1 accuracy results of BSZSL evaluated on the SynSE
and PURLS benchmarks for the NTU-60 and NTU-120 datasets.

TDSM
(Ours)

NTU-60 (Acc, %) NTU-120 (Acc, %) PKU-MMD (Acc, %)
55/5 split 110/10 split 46/5 split

Split 1 87.97 74.45 57.40 (Fig. 7)
Split 2 96.06 (Fig. 6) 63.91 76.92
Split 3 82.60 70.04 77.97
Average 88.88 69.47 70.76

Table 10. Top-1 accuracy results of our TDSM evaluated on the
NTU-60, NTU-120, and PKU-MMD datasets under the SMIE [77]
benchmark.

shot action recognition task. The implication of our DM-
based TDSM is very meaningful as Table 11, which has
brought out significant performance improvement with 2.36
to 13.05%-point.

C.1. Difference against Previous ZSAR Methods
As illustrated in Table 11, previous VAE-based and CL-
based methods rely on explicit point-wise alignment, min-
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Figure 7. Confusion matrix and per-class top-1 accuracy visualization for PKU-MMD 46/5 Split 1.

imizing cross-reconstruction error or feature distances di-
rectly between skeleton and text features. But, our TDSM
aligns the two modalities implicitly by learning to denoise
a noisy skeleton feature in a single reverse diffusion step
conditioned on a text feature.

C.2. Why Diffusion is Effective for ZSAR?
Diffusion models are known for their strong cross-modal
alignment capabilities, enabled through conditioning mech-
anisms that integrate signals. Our TDSM leverages this
property using an one-step reverse diffusion process con-
ditioned on a text embedding, to denoise a skeleton feature.
We believed this property of diffusion (its ability to inte-
grate semantic guidance during denoising) would be partic-
ularly effective for ZSAR, where bridging modality gaps is
critical. To the best of our knowledge, our TDSM is the
first to apply diffusion in this discriminative alignment set-
ting for ZSAR, validating its effectiveness across multiple
benchmarks.

In comparison with the previous work [6, 17, 19, 24, 25,
66], they are based on diffusion models and have genera-
tion tasks while our TDSM utilizes the property of diffu-
sion model’s strong cross-modality alignment for discrim-
inative tasks, not for generation tasks. Note that [17] pre-
dicts actions by generating visual representations in an iter-
ative sampling process, while our TDSM utilizes a diffusion
model in a single-step inference without generating any fea-
ture for action classification.

D. Detailed Structure of the Diffusion Trans-
former

D.1. About the Diffusion Transformer Design
Note that our main contribution does not lie in the design
of new components, but the first diffusion-based framework
that is built upon DiT [48] and MMDiT [15] that have been
well-validated for cross-modality alignment. Unlike the
original DiT, we replace the class label embedding with zg

for semantic conditioning. Also shown in Table 12, we also
experimented with a U-Net backbone [53], but found DiT
to perform better in our setting.

D.2. Diffusion Transformer Architecture
The Diffusion Transformer Tdiff takes zx,t, zg , zl, and t as
inputs (Fig. 2 in the main paper). These inputs are embed-
ded into corresponding feature representations fx,t, fc, and
fl as follows:

fx,t = Linear(zx,t) + PEx,

fc = Linear(TEt) + Linear(zg),

fl = Linear(zl) + PEl,

(16)

where PEx and PEl are positional embeddings applied to
the feature maps, capturing spatial positional information,
while TEt is a timestep embedding [60] that maps the scalar
t to a higher-dimensional space. The embedded features
fx,t, fc, and fl are then passed through B CrossDiT Blocks,
followed by a Layer Normalization (LN) and a final Linear
layer to predict the noise ϵ̂ ∈ RMx×C .

D.3. CrossDiT Block
The CrossDiT Block facilitates interaction between skele-
ton and text features, enhancing fusion through effective
feature modulation [49, 65] and multi-head self-attention
[61]. Fig. 8 shows a detail structure of our CrossDiT Block.
Built upon the DiTs architecture [15, 48], it leverages mod-
ulation techniques and self-attention mechanisms to effi-
ciently capture the dependencies across these modalities.
The skeleton feature fx and local text feature fl are first
modulated separately using Scale-Shift and Scale opera-
tions as:

[αx | βx | γx |αl | βl | γl] = Linear(fc),

Scale-Shift : fi ← (1 + γi)⊙ fi + βi,

Scale : fi ← αi ⊙ fi,

(17)



Methods Characteristics Limitations

VAE-based
Reconstructs skeleton-text feature pairs via cross-reconstruction,

Modality gap due to direct alignmentrecovering skeleton features from text and vice versa

CL-based
Aligns skeleton and text features by minimizing feature distance
through contrastive learning

TDSM
(Ours)

Denoises skeleton latents (i.e., estimates added noise in the forward diffusion)
Noise-sensitive performanceusing reverse diffusion, conditioned on text embeddings,

to naturally align both modalities in a unified latent space

Table 11. Comparison with ours TDSM with existing ZSAR methods.

Backbone
NTU-60 (Acc, %) NTU-120 (Acc, %)

55/5 split 48/12 split 110/10 split 96/24 split
U-Net [53] 82.40 51.12 70.03 59.77
DiT (TDSM) 86.49 56.03 74.15 65.06

Table 12. Comparison with ours TDSM with existing ZSAR meth-
ods.
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Figure 8. A detail structure of our CrossDiT Block.

where i ∈ {x, l} denotes the skeleton or local text feature,
respectively. The parameters α, β, and γ are conditioned
on the global text feature zg and timestep t, allowing the
block to modulate feature representations effectively. Also,
we compute query, key, and value matrices for both skeleton
and local text features separately:

[qi | ki | vi] = Linear(fi). (18)

These matrices are token-wise concatenated and fed into a
multi-head self-attention module, followed by a split to re-
tain token-specific information as:

[fx | fl]← SoftMax
(
[qx | ql] [kx | kl]

T
)
[vx | vl] . (19)

By leveraging the attention from skeleton, timestep, and text
features, the CrossDiT Block ensures efficient interaction
between modalities, promoting the skeleton-text fusion for
discriminative feature learning and improved generalization
to unseen actions.

E. Implementation Details
Table 13 provides a detailed summary of the variables used
in TDSM. We utilized B = 12 CrossDiT Blocks, each con-
taining a multi-head self-attention module with 12 heads.

Module Output Shape
X T × V × M × 3

zx Ex Mx × 256

fx,t zx Embed Mx × 768

zg Ed
1 × 1024

zl Ml × 1024

fc
t Embed
zg Embed 1 × 768

fl zl Embed Ml × 768

ϵ, ϵ̂ Mx × 256

Table 13. The details of feature shape.

All feature dimensions were set to C = 768. The local text
features contained Ml = 35 tokens, while the skeleton fea-
tures were represented by a single token Mx = 1. To ensure
reproducibility, the random seed was fixed at 2,025 through-
out all experiments. Skeleton features (zx) are extracted us-
ing skeleton encoder (Shift-GCN [9] or ST-GCN [71]), re-
sulting in a channel dimension of 256. For text features, two
descriptions per action are encoded using the CLIP [27, 51]
text encoder, producing features with a channel dimension
of 1,024. These features are concatenated along the channel
dimension to form a unified text representation.
Fair comparison. For the SynSE and PURLS settings, we
utilize the same encoders as prior works to maintain con-
sistency. We also encode X into zx with Mx = 1 to
avoid any advantage from higher-resolution features (e.g.,
Mx = T × V ), again to ensure fair evaluation. These are a
common practice in ZSAR task. For fair comparison, we
used the same text prompts employed in existing works.
When publicly available text prompts were provided, we
used them as they were and did not heavily modify or aug-
ment them. For datasets without text descriptions (e.g.,
PKU-MMD [39]), we used GPT-4 [1] to generate single de-
scription per action, ensuring consistency with the existing
text styles.
Hyper-parameter. We tuned hyper-parameters extensively
on the NTU-60 SynSE benchmark and then applied the
same settings to all other datasets. Our method still
achieved SOTA results.



F. Additional Related Work
F.1. Skeleton-based Action Recognition
Traditional skeleton-based action recognition assumes fully
annotated training and test datasets, in contrast to other
skeleton-based action recognition methods under zero-shot
settings which aim to recognize unseen classes without ex-
plicit training samples. Early methods [37, 41, 74, 80] em-
ployed RNN-based models to capture the temporal dynam-
ics of skeleton sequences. Subsequent studies [3, 13, 29, 70]
explored CNN-based approaches, transforming skeleton
data into pseudo-images. Recent advancements leverage
graph convolutional networks (GCNs) [7, 10, 33, 34, 43,
68, 75, 78] to effectively represent the graph structures of
skeletons, comprising joints and bones. ST-GCN [71] in-
troduced graph convolutions along the skeletal axis com-
bined with 1D temporal convolutions to capture motion over
time. Shift-GCN [9] improved computational efficiency by
implementing shift graph convolutions. Building on these
methods, transformer-based models [12, 14, 46, 62, 76]
have been proposed to address the limited receptive field
of GCNs by capturing global skeletal-temporal dependen-
cies. In this work, we adopt ST-GCN [71] and Shift-GCN
[9] to extract skeletal-temporal representations from skele-
ton data, transforming input skeleton sequences into a latent
space for further processing in the proposed framework.
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