DynFaceRestore: Balancing Fidelity and Quality in Diffusion-Guided Blind Face
Restoration with Dynamic Blur-Level Mapping and Guidance

Supplementary Material

1. Implementation Details

1.1. Dynamic Blur-Level Mapping

Architecture: With the objective of transforming the de-
graded input y into a Gaussian-blurred counterpart ¥, the
proposed Dynamic Blur-Level Mapping (DBLM) is com-
posed of two primary modules: the Standard Estimation
(SE) module and the Restoration Model (RM). Specifi-
cally, the SE predicts the Gaussian blur standard deviation
std* corresponding to y, while the RM refines y into the
high-quality (HQ) distribution. The final Gaussian-blurred
output, as described in Eq. (8) of the main paper, is rewrit-
ten as follows:

g = k"% @ RM(y), (1)

where RM represents any SOTA pre-trained restoration
model capable of mapping degraded inputs directly to high-
quality (HQ) outputs. In our experiments, we adopt SwinlR
[7] architecture, which has been well-trained in DifFace
[17]. k5t?” denotes as Gaussian blur kernel defined by std*
estimated by S E module.

As shown in Fig. 1, the SE comprises a Transfer Model
(T'M) and a Standard Deviation Estimator (SDFE). The
T M, built on the SwinIR architecture [7], converts the de-
graded input y into an intermediate Gaussian-blurred image
9'. Subsequently, the SDE processes this intermediate im-
age to estimate the corresponding Gaussian blur level std*.
The detailed architecture of the SDFE is provided in Tab. 1.
Data Preparation for Training SFE: To train the S E mod-
ule and implement the concept of DBLM, we first prepare
the training labels. Specifically, for synthesized low-quality
(LQ) facial images, we collect pairs of ground truth labels:
(1) kernel standard deviations std* to supervise the SDFE
and (2) Gaussian-blurred images Z, generated by degrading
the high-quality (HQ) image = using k**%", to supervise the
T M. The synthesized low-quality (LQ) facial images y are
created using the degradation pipeline described below:

y ={JPEG;[(x ® k;) lc +n¢l} To - (2)

Here, we use the same hyperparameter settings as [10] for
synthesizing low-quality (LQ) facial images. Additionally,
the kernel standard deviation label std* is determined by us-
ing Eq. (3), and the corresponding Gaussian-blurred ground
truth is generated using & = k' @ .

Figure 1. The SE consists of M and a SDF, predicting the
Gaussian blur level corresponding to the degraded input based on
intermediate Gaussian blur image ¢’

std* = argmin (std),

std€[stdmin,Stdmax] (3)
st Ko RM(y) - ke | <t

Here, ¢ represents the error tolerance, x denotes the high-
quality (HQ) ground truth, and ® signifies the convolu-
tion operation. The search space for the standard deviation
range, [stdpmin, Stdmaz), is defined between 0.1 and 15.0
with an interval of 0.1. To solve the optimization problem
in Eq. (3), we employ a brute-force method.

Training procedure of SE: The training procedure of SE
begins with SDFE within the SE. Here, Gaussian-blurred
images are generated by Eq. (4) and used to train the SDFE
by Lspr defined in Eq. (5).

j=k"e. )

Lspg denotes the loss function that aligns the SDE’s
predictions with the actual blur levels std. After completing
this training phase, the SDFE reliably estimates the Gaus-
sian kernel for any Gaussian-blurred image, forming a ro-
bust foundation for effective blur-level prediction in the sub-
sequent stages of the DBLM framework.

Lspr = D(SDE(j), std). (5)

Subsequently, we train the whole SE in an end-to-end
matter, where the SDE and T'M modules in the SE are
trained using the following loss:

Lsg = D(S{d*, Std*) + ’Ysth(gla i‘)v (©6)



Table 1. Architecture of SDE.

architecture channels
Conv2d: kernel size: 3x3; stride: 1 364
BatchNormalize2d 64
LeakyReLU -
Conv2d: kernel size: 3 x3; stride: 1 64 — 64
BatchNormalize2d 64
LeakyReLU -
Conv2d: kernel size: 3x3; stride: 2 64 — 128
BatchNormalize2d 128
LeakyReLU -
Conv2d: kernel size: 3x3; stride: 1 | 128 — 128
BatchNormalize2d 128
LeakyReLU -
Conv2d: kernel size: 3x3; stride: 2 | 128 — 256
BatchNormalize2d 256
LeakyReLU -
Conv2d: kernel size: 3x3; stride: 1 | 256 — 256
BatchNormalize2d 64
LeakyReLU -
AvgPool2d -
Linear 256 — 256
LeakyReLU -
Linear 256 — 256
Linear 256 — 1

where D is the L1 distance, v,:q is a weighting factor for
balancing, std* is the output of SDE, ' is the output of
TM, and T = k;td* ® x. This allows the SE to accu-
rately predict the Gaussian blur level corresponding to any
degraded input y.

Finally, as described in the main paper, the SE and
RM are integrated to form the proposed DBLM, transform-
ing the unknown degraded input y into its corresponding
Gaussian-blurred version . This transformation simplifies
the Blind Face Restoration task into a Gaussian deblurring
problem.

1.2. Dynamic Starting Step Look-up Table

As mentioned in Sec.4.2 in our main paper, the optimal
starting timestep ¢4 for each standard deviation is defined
as follows:

std
)

tsta = argmin  (log(X:) — log(\?t < tol), @)
t

. ~ std
where tol represents the maximum tolerance, X; and Y,

denote the expected values of z; and 7@ in a training set.
We set tol to 1 x 1073 to construct the Dynamic Starting
Step Look-up Table (DSST), which pairs each standard de-
viation std with its corresponding starting step ¢s;4. Given
the Gaussian-blur image ¢, the estimated standard deviation
std* from SE is equalized and serves as a key to retrieve the

corresponding starting step from the DSST.

Time
embedding

t——

Figure 2. The inference flow of the DGSA is as follows: the mea-
surement ¢ and the high-quality prediction 2 from z; are first
concatenated to form a combined input. This concatenated in-
put is then integrated with the current timestep ¢, which is pro-
cessed through the time embedding module of the diffusion model.
The resulting features are input into DGSA, generating a region-
specific guidance scale map that dynamically adjusts the guidance
scale at each timestep to balance fidelity and detail preservation.

Table 2. Network architecture of DGSA.

architecture channels

Conv2d: kernel size: 3x3 6 — 64
ELU -

Conv2d: kernel size: 3x3 | 64 — 64
ELU -

Conv2d: kernel size: 3x3 64 — 3
ReLU-1 -

1.3. Dynamic Guidance Scale Adjuster

Network Architecture: The architecture of the Dynamic
Guidance Scale Adjuster (DGSA) is outlined in Tab. 2.
DGSA consists of three convolutional layers, with ELU ac-
tivation functions applied after the first two layers. The final
layer uses the RelLU-1 activation function to constrain the
output within the range of 0 to 1. At timestep ¢, the inputs
to DGSA include the degraded measurement ¢j, the high-
quality (HQ) prediction ¥ derived from x;, and the current
timestep .

In the implementation of DGSA, as illustrated in Fig. 2,
¢ and 29 are concatenated before being input into the
DGSA. This design ensures that the model effectively cap-
tures low-frequency information from both inputs to pre-
serve fidelity. The timestep ¢ is then embedded and com-
bined with the concatenated features to determine the local-
ized diffusion power required at each region and timestep.
The output of DGSA is a pixel-wise guidance scale map
with values ranging from O to 1, matching the image dimen-
sions. Higher values indicate stronger guidance influence
to preserve fidelity, while lower values relax the guidance
to utilize the DM’s realistic facial generation capabilities.
This behavior is visualized in Fig. 5.



Algorithm 1 DGSA training

Require: y: Unknown degraded LQ input; ¢terotq:: Total train-
ing iterations; -y;: Weight factor of SWT four subbands;
1: iter =0;
2: while iter < iteriotar do
4, std* = DBLM (y), SE(y);
totart = DSST(std*);
t ~ Uniform(0,tstart);

4
5:
6: zy = Vauzo + 1 — ae, e ~ N(0,1);
7:
8
9

(98]

0o_ 1 _ [ima .
Ty = \/ﬁwt Gt €65

compute Gaussian blur kernel k using std*;
: Ti_, = \/%(xt — %e@—!—atemwN(O, 1);
10: A, = DGSA(Y,x,t)
11: Tt—1 :$;71—At szt H’y—kt®flig{
12: 20, = \/alt-ixt* — I;szleg;

132 Lpgse = >, nD(SWT(x)_1)i, SWT(20):)
14: + DISTS(x)_1,x0);

15: update DGSA using Lpgsk;

16: iter = iter + 1;

17: end while

2.
;

Training procedure: The DGSA training process is di-
vided into two stages for optimal performance. Initially,
DGSA is trained using actual Gaussian blurry images ¢ as
the measurement inputs, generated based on Eq. (4). That
is, we replace the output of DBLM ¢y with g in this stage.
This stage consists of 20,000 iterations, allowing DGSA
to learn robust guidance scale mappings for well-defined
blurry images as its measurement input. In the second stage,
DGSA undergoes fine-tuning with its original input, ¢, rep-
resenting the measurement predicted by our DBLM. This
fine-tuning phase, spanning 7,000 iterations, further refines
DGSA’s ability to adapt to real-world degraded inputs. Dur-
ing training, the DBLM module is kept frozen, and the
DSST is pre-established.

We train DGSA at each randomly sampled timestep us-
ing the following loss function:

Lpasa = vD(SWT(a}_1)i, SWT (0):)+
i ®)
DISTS(x}_,,x0),

where y; are the weighted factors of the four subbands (LL,
LH, HL, HH) decomposed by Stationary Wavelet Transfor-
mation (SWT) [3, 5], g is the learning target, and x?_l is
the HQ prediction based on z;_; at timestep t — 1. Here,
D and DISTS [1, 5] are the L1 reconstruction loss and the
perceptual loss, respectively.

The L1 reconstruction loss is applied across four sub-
bands obtained via Stationary Wavelet Transform (SWT),
with weighted factors ~; for LL, LH, HL, and HH set to
0.00, 0.01, 0.01, and 0.05, respectively. These weights pri-
oritize high-frequency details, ensuring that the details of
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Figure 3. The frequency responses of actual Gaussian blurry im-
ages, 9, and §'. Here, 9, the output of TM (refer to Fig. 1),
exhibits significant differences in the high-frequency components
compared to actual Gaussian-blurred images. In contrast, ¢, es-
timated using Eq. (1), closely matches the frequency response of
the actual Gaussian-blurred image.

the samples adjusted by guidance remain consistent with the
ground truth. Furthermore, we utilize DISTS to maintain
the perceptual quality of the output. The complete training
procedure is detailed in Algorithm 1.

1.4. Inference

Our DynFaceRestore framework is designed to be eas-
ily extendable, allowing for the use of multiple guidance
sources. This flexibility enables a balance between percep-
tual quality and fidelity. In all our experiments, we utilize
guidance from three blurred images, as outlined in Algo-
rithm 2, with the weights A*€[1:2:3] are set to 0.7, 0.2, and
0.1, respectively. Further experimental analysis and discus-
sions regarding the multiple guidance setup are provided in
Sec. 2.3.

2. Extra Experiments and Ablation Studies

2.1. Kernel Mismatch

The difference between ¢ and ¢: The analysis in Fig. 3
provides a detailed comparison between ¢’ and ¢, offering a
strong rationale for designing the DBLM output as 3 rather
than directly using the output of TM, . By transforming
9’ and ¢ into the frequency domain, a significant disparity
in high-frequency intensity emerges when comparing ¢’ to
actual Gaussian-blurred images.

In contrast, explicitly convolving the output of RM (y)
with a Gaussian kernel to produce ¢ yields high-frequency
intensity closely aligned with that of actual Gaussian-
blurred images. This alignment suggests that the high-
frequency discrepancy in ¢’ is a crucial contributor to kernel
mismatch, adversely affecting restoration fidelity. Further-
more, the quantitative results in Tab. 3 confirm these find-
ings, showing that using ¢ as diffusion guidance in DBLM
achieves superior fidelity over 3, further validating the ef-
fectiveness of explicitly constructing 9.

Refinement of the Standard Deviation: In Fig. 4, exper-
imental evidence highlights the critical role of kernel re-



Algorithm 2 Inference - Multiple Guidance

Require: y: Unknown degraded LQ input; \*€[1:2:3];

Output: xy: HQ sampled image;
11 ¢, std* = DBLM (y), SE(y);

weights of each guidance;

~ i€[1,2,3
T = [std*, std* — 1, std* — 2]
~ i€[1,2,3
3: compute Gaussian blur kernel £*€[123] using st <! ];
4 €238 = [y k2 @ RM (y), k* @ RM (y)]
1,2,3
s: t@iﬁ; 3~ pssT(star <,
N tdze[l,z,g] tH*Ze[l’Q’B]
: rt
T Tt gpar \/ téta,ty + \/1_at1 art €7€NN(Oa 1)’
8: fort =tle - 1do
9: J,‘? = \/%.Tt — 4/ 1;?"
10: Lo = %(:ct — \/%69) + oe,e ~ N(0,1);
11:  compute Gaussian blur kernel k.2 uging std:€!**?;
12: A = DGSA(y 29 t);
13: ift e [ start» sta'rt] then
14: Ti—1 = xtfl A X th kl & xy
15: stdf_y = std} — /@ X Va1 Hy —k} @ !
16: end if
17: ift e [tstart’ sta'rt] then )
18: X =1 — Ay X Vg, Zi:l()\1+/\2 Hy — k@Y
, , , 2
19: stdif[f’Q] = Stdie[m] —Vay x vkieuﬂ](,\ur,\ﬂ ‘ yze[l,z] - kie[l’Q] @l
20: end if
21: ift € [t3,,,4,0] then _
22: Ti—1 —xt 1 —At X th Z?:l(ﬁ;k)\?’) yl—k%®$t
. , , 2
23 tdzeh,z,s] tdze[l 23 _ Jan % vkie[lm](m) giell23] k;e[m,:ﬂ ® 29|
24: end if
25: end for

26: return x

Table 3. Ablation study on different output types of DBLM in the
CelebA-Test dataset. Here, ¢’ and 3 represent different approxi-
mations of the Gaussian-blurred image 2. The results clearly show
that ¢ provides a closer approximation of Z, resulting in improved
fidelity.

Gaussian Blur

image PSNR? | SSIMt | LPIPS) | FID| | IDA| | LMDJ
i 24261 | 0.661 | 0332 | 14.185 | 0.756 | 3.428
g 24349 | 0.664 | 0332 | 14.780 | 0.748 | 3.419

finement at each step in mitigating kernel mismatch during
the sampling process. Using an actual Gaussian blur mea-
surement with a kernel of std = 3.0 as the guidance, the
experiment in Fig. 4 evaluates outcomes without employ-
ing DBLM, DSST, or DGSA to focus solely on analyzing
the kernel refinement function. When the kernel std is not
refined and fixed to the wrong standard deviation at each

step, a substantial deviation between the final sampled re-
sults and the ground truth is evident, even with guidance
applied. Notably, the results closely align with the ground
truth only when the kernel std is accurately set to 3.0, as
further validated by the “PSNR over std” analysis shown in
Fig. 4.

In contrast, with kernel std refinement applied at each
step, the sampled results exhibit remarkable fidelity to the
ground truth, even when the initial kernel std estimation de-
viates from the actual value. This outcome underscores the
robustness of the kernel refinement strategy in addressing
inaccuracies in initial kernel estimation, effectively bridging
the gap caused by kernel mismatch. These findings validate
the necessity of dynamic kernel std adjustments to achieve
high-quality restoration.



PSNR over std

Measurement y
Blur by std = 3.0

w/o refinement
Fix at std = 3.0

Ground Truth

with refinement
Start from std = 2.0

w/o refinement
Fix at std = 2.0

with refinement
Start from std = 4.0

w/o refinement
Fix at std =4.0

Figure 4. Comparison of results with and without kernel refinement is conducted using an actual Gaussian-blurred image with a kernel
standard deviation (std) of 3.0 as the input measurement for guidance. During the diffusion sampling process, applying guidance adjustment
without kernel refinement—e.g., fixing the kernel std to 2.0 or 4.0—leads to significant deviations from the ground truth due to kernel
mismatch. When the fixed std is set to 2.0, the mismatch limits the diffusion model’s ability to add details, resulting in overly blurry
outputs that rely too heavily on the measurement. Conversely, with a fixed std of 4.0, the diffusion model overly enhances the image,
introducing hallucinated artifacts. In contrast, incorporating kernel refinement alongside guidance adjustment enables the sampling process
to correct initial inaccuracies in kernel prediction. Even when starting with an imperfect kernel std, such as 2.0 or 4.0, the refined approach
ensures that the final outputs align much more closely with the ground truth. This demonstrates the robustness of the refinement strategy

in mitigating kernel mismatch issues.

2.2. Visualize of DGSA

The output of DGSA is visualized in Fig. 5 to highlight its
effectiveness. In each diffusion timestep, DGSA dynami-
cally adjusts the guidance scale region-wise. The guidance
scale gradually decreases for detail-rich areas such as hair
and wrinkles, enabling these regions to harness more of the
pre-trained DM’s high-quality image prior to sampling, re-
sulting in realistic and refined facial details. Conversely, the
guidance scale remains elevated for structural regions, such
as the eyes and mouth, to preserve their geometric integrity
and ensure the reconstructed image aligns closely with the
ground truth. This adaptive balance between fidelity and
detail generation leads to high realism outputs while main-
taining structural consistency.

2.3. Multiple Guidance

In this section, we evaluate the impact of varying the num-
ber of guidance sources. To ensure accurate assessment,

DGSA is excluded to eliminate any potential external influ-
ences in this experiment. Each guidance source corresponds
to a specific standard deviation, which changes following
a defined pattern. For example, with n guidance sources,
we have ¢/€[1.2:-7] corresponding to the standard devia-
tions std*, std* — 1,...,std* — (n — 1) and the weights
NE[L2,0m]

Since 7! with std* retains more reliable low-frequency

structural information, ! is assigned a higher weight. In
contrast, smaller standard deviations values /€234 pro-
vide higher-frequency details with reduced confidence, and
thus, \“€[2:34] are assigned lower weights, as outlined by
A% in Tab. 4.

As shown in Tab. 4, increasing the number of guidance
sources amplifies the influence of the restoration model
(RM), resulting in improved fidelity and higher scores in
PSNR. However, perceptual quality (FID) is optimized
when using a single guidance source, which allows more
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Figure 5. Visualization of DGSA at various timesteps during the
sampling process. Here, x) is the HQ prediction of x; at timestep
t. DGSA generates guidance maps, where blue regions indicate
less guidance and rely more on the diffusion model (DM) to add
details, while red regions signify stronger guidance with less re-
liance on the DM. As ¢ decreases, areas requiring the DM’s HQ
prior, such as hair, display a lower guidance scale to enhance de-
tail. Conversely, facial regions maintain a higher guidance scale to
ensure fidelity preservation.

Table 4. Ablations of the different numbers of guidance in
CelebA-Test dataset. # denotes the numbers of guidance and \*
are the weights of each guidance. The best performance is high-
lighted with bold.

# X PSNRT | IDA] | FIDJ
1 [1.0] 25.014 | 0.7242 | 18.452
2 [0.8,0.2] 25.049 | 0.7238 | 18.98
3 [0.7,0.2,0.1] 25.107 | 0.7236 | 19.786
4 | 10.7,0.1,0.1,0.1] | 25.185 | 0.7242 | 20.947

reliance on the diffusion model. This demonstrates the flex-
ibility of our framework, enabling users to tune the desired
output by controlling the number of guidance sources. Con-
sequently, our framework effectively achieves a balance be-
tween perceptual quality and fidelity.

2.4. Different Starting Steps

By setting up the output of DBLM as a Gaussian-blurred
image based on the input degradation severity, we can lever-
age this property to identify the optimal timestep (t*), as
outlined in Sec. 4.2 using “Dynamic Starting Step Lookup
Table”. Note that ¢t* is automatically determined for dif-
ferent datasets. To demonstrate the effectiveness of our
approach, we conduct experiments with different starting
timesteps, as shown in Tab. 5. Larger timesteps (> t*) re-
sult in a loss of information from the guidance observation,
leading to reduced fidelity. Conversely, smaller timesteps
(< t*) provide insufficient iterations to recover fine details,
thereby diminishing the quality of the reconstruction.

2.5. Different SOTA Restoration Model

We evaluate the impact of different Restoration Mod-
els (RMs) on overall performance by replacing our pre-

Table 5. Ablation study of same blurred image with different start-
ing steps in CelebA-Test. Top performances in bold and underline.

Steps PSNRT | SSIMT | LPIPS} | FID| | IDA] | LMDJ
400 (< £7) | 23393 | 0.659 | 0.394 | 42.055 | 0.853 | 3.781
1000 (> t*) | 24.172 | 0.657 | 0.336 | 14.556 | 0.761 | 3.470
+*[690,925] | 24.349 | 0.664 | 0332 | 14.780 | 0.748 | 3.419

trained RM with various alternatives, including GAN-based
GFP-GAN [6], CodeBook-based RestoreFormer [13] and
deterministic-based SwinIR [7]. To ensure a fair compar-
ison, we first fine-tune each RM on the FFHQ [4] dataset
before integrating it into our framework.

As shown in Tab. 6 and visualized in Fig. 6, GFP-
GAN suffers from poor realism (higher FID). Integrating
our approach significantly improves the realism of GFP-
GAN while maintaining competitive fidelity. Also, we find
that RestoreFormer outperforms GFP-GAN in realism, and
our method can further enhance RestoreFormer in terms
of fidelity, structural integrity, PSNR and SSIM. Finally,
SwinlIR achieves the highest PSNR and SSIM but produces
overly smooth images, compromising realism. Incorporat-
ing our method with SwinIR substantially reduces FID, bal-
ancing fidelity and realism. Overall, our method consis-
tently improves realism across different RMs while main-
taining competitive fidelity, achieving a more optimal trade-
off between perceptual quality and fidelity.

3. More Visualization

This section presents additional qualitative comparisons
with state-of-the-art methods, including GPEN [16], GF-
PGAN [6], RestoreFormer [13], CodeFormer [18], DiffBIR
[8], DAEFR [12], PGDiff [15], DifFace [17], DR2 [14]and
3Diffusion [9].

For the CelebA-Test dataset, Fig. 7 demonstrates that our
DynFaceRestore not only produces reconstructions closer
to the ground truth than competing methods but also offers
superior perceptual quality. This highlights the balance be-
tween fidelity and perceptual quality in our approach.

For the three real-world datasets—LFW-Test [2], Wider-
Test [18], and Webphoto-Test [6]—the results in Fig. 8,
Fig. 9, and Fig. 10, respectively, highlight the advantages
of DynFaceRestore. Specifically, our approach consistently
generates more realistic facial details, such as hair strands
and beards, while effectively preserving the global structure
and local textures.

4. Limitations

A major limitation of our proposed method is its computa-
tional complexity, as shown in Tab. 1 (main paper). This
is primarily due to the optimization of kernel prediction and
the incorporation of DM guidance at each step. The acceler-
ation through DDIM [1 1] has yet to be explored. Therefore,



Table 6. Differnet RM model comparisons to in CelebA-Test. The best and second performances are highlighted with bold and underline.

Type Method PSNR?T | SSIM?T | LPIPS] | FID| IDA| | LMDJ
GAN GFP-GAN 22.841 0.620 0.355 23.860 | 0.822 4.793
Ours + GFP-GAN 23.867 0.649 0.340 15.943 | 0.772 3.654

CodeBook RestoreFormer 23.001 0.592 0.376 22.874 | 0.783 4.464
Ours + RestoreFormer | 23.794 0.655 0.341 17.042 | 0.820 3.859

Deterministic SwinIR 26.177 0.746 0.377 61.209 | 0.720 3.101
Ours + SwinIR 24.349 0.664 0.332 14.78 0.748 3.419

reducing the denoising steps and selectively applying guid-
ance to the critical step offers a promising research direction
to address this challenge.

Additionally, as illustrated in Fig. 11, the DBLM mod-
ule in our DynFaceRestore framework exhibits limitations
when handling the complex degradation patterns observed
in old photographs, such as incomplete restoration due
to residual artifacts (Fig. 11 left) or geometric distortions
(Fig. 11 right). These limitations result in difficulties dur-
ing the subsequent DM sampling and guidance processes,
leading to difficulties in accurately identifying regions that
require fidelity preservation and refinement. As a result,
the overall restoration quality is degraded. We attribute this
issue to the training of the pre-trained restoration model,
which fails to capture the diverse and severe degradations
commonly observed in old photographs. A straightforward
and effective solution to overcome these limitations is to re-
place the RM with more advanced restoration models.

Moreover, real-world images often exhibit spatially
varying degradations, posing a significant challenge in per-
fectly addressing the kernel mismatch issue. Treating the
entire image as uniformly degraded can lead to undesired
artifacts, as shown in Fig. 12, which our proposed method
has not yet effectively resolved. Addressing this issue is
crucial for future research, and a direct approach is to di-
vide regions and estimate degradations separately.
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Figure 6. Ablation study with different RMs.
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Figure 7. More visual comparisons on CelebA-Test. Our method achieves high-fidelity reconstructions while preserving natural facial
features.
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Figure 8. Qualitative results from LFW-Test demonstrate that our restoration method produces more natural features (e.g., eyes) and
realistic details (e.g., hair) compared to other approaches, with improved fidelity.
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Figure 9. More visual comparisons on Wider-Test. Our restoration method produces more natural features (e.g., eyes) and realistic details
(e.g., hair, skin) compared to other approaches, with improved fidelity.
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Figure 10. More visual comparisons on Webphoto-Test. Our restoration method produces more natural features (e.g., eyes) and realistic
details (e.g., hair, skin) compared to other approaches, with improved fidelity.
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Figure 11. Limitations of Our DynFaceRestore. This issue likely arises from limitations in the degradation pipeline used to synthesize
low-quality images for simulating real-world degradation. The current pipeline inadequately captures old photographs’ diverse and severe
degradation characteristics. Revising the pipeline to represent these complexities better is essential for improving restoration performance

in such challenging scenarios.
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Figure 12. Limitations of Our DynFaceRestore. We degrade im-
ages using Eq. (2), applying both global degradation (uniformly
across the entire image) and local degradation (independently for
different small regions). The results indicate the appearance of ar-
tifacts in the mouth and eye regions.
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