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Supplementary Material

A. Additional Discussions on Results
A.1. Additional Qualitative Comparisons
Fig. 8 and Fig. 9 provide additional qualitative compar-
isons of PS results on the WorldView-3 (WV3), QuickBird
(QB), and GaoFen-2 (GF2) datasets [9] at full-resolution.
Fig. 10 and Fig. 11 provide additional qualitative com-
parisons of PS results on the WV3, QB, GF2 datasets at
reduced-resolution. Our PAN-Crafter consistently gener-
ates pan-sharpened images with minimal artifacts, preserv-
ing fine details around buildings and vehicles, whereas ex-
isting methods often produce blurring or structural distor-
tions.

A.2. Additional Quantitative Evaluation
To provide a more comprehensive analysis, we present ex-
tended quantitative evaluations in the Supplementary Mate-
rial. Table 6, Table 7, and Table 8 provide detailed results
on the WV3, GF2, and QB datasets, respectively. The (i)
metrics, (ii) full-/no-reference, and (iii) Wald’s evaluation
protocol [42, 44] used for evaluations are quite commonly
known for PS restoration in remote sensing. We confirm
that all comparison methods were trained using their offi-
cial codebases and were evaluated, following the same pro-
tocol [42, 44] used in the prior work [13, 30, 52, 62]. To
ensure fairness, we applied the same data splits [9], ran-
dom seeds, data augmentations. PAN-Crafter consistently
achieves strong performance across various evaluation met-
rics, further demonstrating its effectiveness in preserving
both spatial and spectral fidelity. These extended results
reinforce the robustness of our approach across different
datasets and imaging conditions.

A.3. Generalization on Unseen Satellite Dataset
To further evaluate the zero-shot generalization capabil-
ity of PAN-Crafter, we provide additional quantitative
and qualitative results on the unseen WorldView-2 (WV2)
dataset [9]. Table 9 and Fig. 12 present quantitative and
qualitative results, respectively. Despite not being trained
on WV2, PAN-Crafter outperforms existing methods in
both spatial and spectral fidelity, demonstrating its robust-
ness to cross-sensor variations. The results highlight the
effectiveness of our cross-modality alignment strategy, en-
abling strong generalization without requiring additional
fine-tuning.

A.4. Computational Complexity
Efficiency is a critical factor in PS applications, particularly
for real-time and large-scale remote sensing tasks. We eval-

uate the computational complexity of PAN-Crafter against
state-of-the-art methods in terms of inference time, mem-
ory consumption, FLOPs, and the number of parameters,
as summarized in Table 10. Our PAN-Crafter achieves a
significant speedup over diffusion-based models, with over
1110.78× faster inference time compared to TMDiff [52]
and over 328.33× faster than PanDiff [30], demonstrat-
ing the efficiency of our attention-based alignment mecha-
nism. Compared to CANConv [13], which utilizes k-means
clustering [10] for spatial adaptation, PAN-Crafter achieves
50.11× faster inference while maintaining competitive re-
construction quality.

B. Limitations

B.1. Misalignment between multi-spectral bands

Our method addresses cross-modality misalignment but
does not explicitly handle misalignment between multi-
spectral bands. A potential solution is to apply depth-wise
separable convolutional layers in CM3A for MS feature
projection, preventing information mixing across spectral
bands.

C. Further Ablation Studies

C.1. Ablation studies on MARs and CM3A

Table 11, Table 12, and Table 13 present extended ablation
studies on MARs and CM3A across WV3, GF2, and QB
datasets. The results demonstrate the significant impact of
MARs, which consistently improves both spatial and spec-
tral fidelity by leveraging auxiliary PAN self-supervision.
While CM3A alone provides only marginal benefits, its ef-
fectiveness is significantly amplified when combined with
MARs. The bidirectional interaction between PAN and
MS reconstruction in MARs enables CM3A to refine cross-
modality alignment more effectively, leading to a syner-
gistic enhancement in both spatial consistency and spec-
tral preservation. These findings further validate the im-
portance of jointly leveraging MARs and CM3A for robust
PAN-sharpening.
Ablation settings. We clarify the ablation setups for the
main components: (i) without MARs – we remove the PAN
mode entirely, including all learnable parameters related to
modality switching (i.e., α, β, and γ). This turns the archi-
tecture into a single-task (PS) network; (ii) without CM3A
– we remove the concatenated original inputs (Ilr,↓

ms , I
rep,↓
pan )

from the attention block, disabling cross-modality condi-
tioning in the alignment mechanism.



C.2. Additional ablation studies

Additional component-wise ablations on the WV3, GF2,
and QB datasets were done: (i) without modulation param-
eters (β, γ) – the modulation is not applied to the feature
maps (Table 14); (ii) without combination parameter (α) –
we eliminate the learnable fusion weight between features
(Table 14); (iii) varying local attention window size k in
CM3A (Table 15); (iv) two-stage learning with pretrain on
the PAN back-reconstruction and finetune for PS (Table 16).

C.3. Justification of ablation results

The reason that U-Net without MAR and CM3A is superior
to existing methods is that our multi-scale window-based
local attention [35] in U-Net is still effective to constitute
a strong baseline. We additionally ablated this component
and its result can be seen in the (Table 17). Without it (re-
placement of the local attention layer with convolution layer
in the baseline model), the performance drop is significant.

D. Discussion on Various Cross-Attention Ap-
proaches

While the two prior works employ cross-attention in multi-
frame restoration [24] and reference-based SR [54], their
setups are substantially different from ours. Siamtrans [24]
applies cross-attention after warping adjacent video frames
to a query frame, assuming strong temporal correlation and
accurate alignment. Similarly, TTSR [54] uses global cross-
attention between an LR image and a semantically unrelated
HR reference. [24, 54] rely on global attention [12, 43],
which is computationally expensive and less suitable for lo-
cal misalignment patterns. In contrast, our CM3A module
is specially tailored for PS, where PAN and MS images are
often not significantly misaligned and share similar spatial
structures. To effectively handle this, we introduce a novel
MARs-mode-dependent local cross-/self-attention. Also,
we replace fixed positional embeddings (PE) with down-
sampled original images concatenated to the attention in-
puts to implicitly learn the relative misalignment between
modalities. The distinction between [24, 54] and our CM3A
is summarized as Table 5.

E. Local Attention Mechanisms

Given a query feature Q ∈ RH×W×C and key-value pairs
K,V ∈ RH×W×C , Local Attention fuction (LocalAttn)
[35] computes attention scores within the k×k local recep-
tive field as follows:

Attni,j,m,n = Qi,jKi+m,j+n,

Attn← SoftMax
(
Attn/

√
C
)
,

LocalAttn(Q,K,V)i,j

=

k′∑
m=−k′

k′∑
n=−k′

Attni,j,m,nVi+m,j+n,

(13)

where Attn ∈ RH×W×k×k is the attention score, and
SoftMax is applied along the last two dimensions.
Computational complexity analysis. The computational
complexity of a global self-attention layer for a feature map
x of size (H,W,C) is:

O(2(HW )2C), (14)

due to pairwise interactions across all spatial locations. In
contrast, CM3A leverages local attention with a fixed recep-
tive field size of k × k, reducing the complexity to:

O(2(HW )k2C). (15)

Since k2 ≪ HW , our approach significantly reduces
computational overhead while maintaining effective cross-
modality feature alignment. By restricting attention to local
neighborhoods, CM3A balances efficiency with the ability
to capture localized structural discrepancies between PAN
and MS images.
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Input LRMS 𝐈𝐈mslr PanDiff [30] DCPNet [62] TMDiff [52] CANConv [13] PAN-Crafter (Ours)Zoomed-in

Figure 8. Visual comparison of PAN-Sharpening (PS) results on the WV3, QB, and GF2 datasets at full-resolution. The leftmost column
shows the input LRMS images, with red boxes indicating zoomed-in regions for both LRMS and PAN images. Our PAN-Crafter method
generates pan-sharpened images with minimal artifacts, particularly around buildings and vehicles, whereas other methods frequently
produce blurry or distorted outputs.
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Input LRMS 𝐈𝐈mslr PanDiff [30] DCPNet [62] TMDiff [52] CANConv [13] PAN-Crafter (Ours)Zoomed-in

Figure 9. Visual comparison of PAN-Sharpening (PS) results on the WV3, QB, and GF2 datasets at full-resolution. The leftmost column
shows the input LRMS images, with red boxes indicating zoomed-in regions for both LRMS and PAN images. Our PAN-Crafter method
generates high-quality of pan-sharpened images with minimal artifacts, particularly around vehicles and crosswalks, whereas other methods
frequently produce blurry or distorted outputs.
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LAGConv [20] PAN-Crafter (Ours)S2DBPN [61] PanDiff [30] DCPNet [62] TMDiff [52] CANConv [13]

Figure 10. Visual comparison of PS results on the GF2 and QB datasets at reduced-resolution. The blue-colored insets represent error
maps computed against the ground truth (GT), where brighter regions indicate higher reconstruction errors.
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Figure 11. Visual comparison of PS results on the GF2 and QB datasets at reduced-resolution. The blue-colored insets represent error
maps computed against the ground truth (GT), where brighter regions indicate higher reconstruction errors.

Methods Tasks Attn. types Characteristics
Siamtrans [24] Multi-frame restoration Global Only cross-attention with PE
TTSR [54] Reference-based SR Global Only cross-attention with PE
Ours PAN-sharpening Local MARs-mode-dependent cross-/self-attention

Table 5. Comparison with ours CM3A with existing cross-attention methods.
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Figure 12. Visual comparison of PS results on the unseen WV2 dataset at full-resolution. The leftmost column shows the input LRMS
image, with red boxes indicating zoomed-in regions for both LRMS and PAN images. Since WV2 is not included in the training phase,
this evaluation represents a real-world zero-shot setting, assessing the generalization capability of PS models. Our proposed PAN-Crafter
significantly outperforms the existing methods by effectively preserving both fine structural and spectral details of the input MS and PAN
images

WV3 Dataset Full-Resolution Reduced-Resolution
Methods HQNR↑ Ds↓ Dλ↓ ERGAS↓ SCC↑ SAM↓ Q8↑ PSNR↑ SSIM↑
PanNet [57] 0.918 ± 0.031 0.049 ± 0.019 0.035 ± 0.014 2.538 ± 0.597 0.979 ± 0.006 3.402 ± 0.672 0.913 ± 0.087 36.148 ± 1.958 0.966 ± 0.011
MSDCNN [58] 0.924 ± 0.030 0.050 ± 0.020 0.028 ± 0.013 2.489 ± 0.620 0.979 ± 0.007 3.300 ± 0.654 0.914 ± 0.087 36.329 ± 1.748 0.967 ± 0.010
FusionNet [50] 0.920 ± 0.030 0.053 ± 0.021 0.029 ± 0.011 2.428 ± 0.621 0.981 ± 0.007 3.188 ± 0.628 0.916 ± 0.087 36.569 ± 1.666 0.968 ± 0.009
LAGNet [20] 0.915 ± 0.033 0.055 ± 0.023 0.033 ± 0.012 2.380 ± 0.617 0.981 ± 0.007 3.153 ± 0.608 0.916 ± 0.087 36.732 ± 1.723 0.970 ± 0.009
S2DBPN [61] 0.946 ± 0.018 0.030 ± 0.010 0.025 ± 0.010 2.245 ± 0.541 0.985 ± 0.005 3.019 ± 0.588 0.917 ± 0.091 37.216 ± 1.888 0.972 ± 0.009
PanDiff [30] 0.952 ± 0.009 0.034 ± 0.005 0.014 ± 0.005 2.276 ± 0.545 0.984 ± 0.004 3.058 ± 0.567 0.913 ± 0.084 37.029 ± 1.796 0.971 ± 0.008
DCPNet [62] 0.923 ± 0.027 0.036 ± 0.012 0.043 ± 0.018 2.301 ± 0.569 0.984 ± 0.005 3.083 ± 0.537 0.915 ± 0.092 37.009 ± 1.735 0.972 ± 0.008
TMDiff [52] 0.924 ± 0.015 0.059 ± 0.009 0.018 ± 0.007 2.151 ± 0.458 0.986 ± 0.004 2.885 ± 0.549 0.915 ± 0.086 37.477 ± 1.923 0.973 ± 0.008
CANConv [13] 0.951 ± 0.013 0.030 ± 0.008 0.020 ± 0.008 2.163 ± 0.481 0.985 ± 0.005 2.927 ± 0.536 0.918 ± 0.082 37.441 ± 1.788 0.973 ± 0.008
PAN-Crafter 0.958 ± 0.009 0.027 ± 0.004 0.016 ± 0.006 2.040 ± 0.459 0.988 ± 0.003 2.787 ± 0.523 0.922 ± 0.082 37.956 ± 1.771 0.976 ± 0.006

Table 6. Quantitative comparison of deep learning-based PS methods on the WV3 dataset. Red indicates the best performance.

GF2 Dataset Full-Resolution Reduced-Resolution
Methods HQNR↑ Ds↓ Dλ↓ ERGAS↓ SCC↑ SAM↓ Q4↑ PSNR↑ SSIM↑
PanNet [57] 0.929 ± 0.013 0.052 ± 0.009 0.020 ± 0.012 1.038 ± 0.214 0.975 ± 0.006 1.050 ± 0.209 0.963 ± 0.009 39.197 ± 2.009 0.959 ± 0.011
MSDCNN [58] 0.898 ± 0.016 0.079 ± 0.011 0.026 ± 0.014 0.862 ± 0.141 0.983 ± 0.003 0.946 ± 0.166 0.972 ± 0.009 40.730 ± 1.564 0.971 ± 0.006
FusionNet[50] 0.865 ± 0.018 0.105 ± 0.013 0.034 ± 0.013 0.960 ± 0.193 0.980 ± 0.005 0.971 ± 0.195 0.967 ± 0.008 39.866 ± 1.955 0.966 ± 0.009
LAGNet [20] 0.895 ± 0.021 0.078 ± 0.013 0.030 ± 0.014 0.816 ± 0.121 0.985 ± 0.003 0.886 ± 0.140 0.974 ± 0.009 41.147 ± 1.384 0.974 ± 0.005
S2DBPN [61] 0.935 ± 0.011 0.046 ± 0.007 0.020 ± 0.012 0.686 ± 0.125 0.990 ± 0.002 0.772 ± 0.149 0.981 ± 0.007 42.686 ± 1.676 0.980 ± 0.005
PanDiff [30] 0.936 ± 0.011 0.045 ± 0.009 0.020 ± 0.014 0.674 ± 0.110 0.990 ± 0.002 0.767 ± 0.134 0.981 ± 0.007 42.827 ± 1.462 0.980 ± 0.005
DCPNet [62] 0.953 ± 0.019 0.024 ± 0.008 0.024 ± 0.022 0.724 ± 0.138 0.988 ± 0.003 0.806 ± 0.153 0.980 ± 0.007 42.312 ± 1.682 0.979 ± 0.005
TMDiff [52] 0.942 ± 0.016 0.030 ± 0.010 0.029 ± 0.011 0.754 ± 0.143 0.988 ± 0.003 0.764 ± 0.155 0.979 ± 0.007 41.896 ± 1.765 0.977 ± 0.005
CANConv [13] 0.919 ± 0.011 0.063 ± 0.009 0.019 ± 0.010 0.653 ± 0.124 0.991 ± 0.002 0.722 ± 0.138 0.983 ± 0.006 43.166 ± 1.705 0.982 ± 0.004
PAN-Crafter 0.964 ± 0.015 0.017 ± 0.007 0.020 ± 0.013 0.552 ± 0.093 0.994 ± 0.001 0.596 ± 0.110 0.988 ± 0.006 45.076 ± 1.610 0.988 ± 0.003

Table 7. Quantitative comparison of deep learning-based PS methods on the GF2 dataset. Red indicates the best performance.

QB Dataset Full-Resolution Reduced-Resolution
Methods HQNR↑ Ds↓ Dλ↓ ERGAS↓ SCC↑ SAM↓ Q4↑ PSNR↑ SSIM↑
PanNet [57] 0.851 ± 0.035 0.092 ± 0.021 0.063 ± 0.019 4.856 ± 0.590 0.966 ± 0.015 5.273 ± 0.946 0.911 ± 0.094 35.563 ± 1.930 0.939 ± 0.012
MSDCNN [58] 0.888 ± 0.037 0.058 ± 0.027 0.058 ± 0.014 4.074 ± 0.244 0.977 ± 0.010 4.828 ± 0.824 0.925 ± 0.098 37.040 ± 1.778 0.954 ± 0.007
FusionNet [50] 0.853 ± 0.041 0.079 ± 0.025 0.074 ± 0.022 4.183 ± 0.266 0.975 ± 0.011 4.892 ± 0.822 0.923 ± 0.100 36.821 ± 1.765 0.952 ± 0.007
LAGNet [20] 0.892 ± 0.024 0.035 ± 0.009 0.075 ± 0.019 3.845 ± 0.323 0.980 ± 0.009 4.682 ± 0.785 0.930 ± 0.095 37.565 ± 1.721 0.958 ± 0.006
S2DBPN [61] 0.908 ± 0.044 0.036 ± 0.023 0.059 ± 0.026 3.956 ± 0.291 0.980 ± 0.008 4.849 ± 0.822 0.928 ± 0.093 37.314 ± 1.782 0.956 ± 0.006
PanDiff [30] 0.919 ± 0.010 0.055 ± 0.012 0.028 ± 0.011 3.723 ± 0.280 0.982 ± 0.007 4.611 ± 0.768 0.935 ± 0.084 37.842 ± 1.721 0.959 ± 0.006
DCPNet [62] 0.880 ± 0.013 0.073 ± 0.013 0.051 ± 0.017 3.618 ± 0.313 0.983 ± 0.010 4.420 ± 0.710 0.935 ± 0.095 38.079 ± 1.454 0.963 ± 0.004
TMDiff [52] 0.901 ± 0.011 0.068 ± 0.012 0.034 ± 0.016 3.804 ± 0.279 0.981 ± 0.008 4.627 ± 0.814 0.930 ± 0.096 37.642 ± 1.831 0.958 ± 0.006
CANConv [13] 0.893 ± 0.010 0.070 ± 0.017 0.039 ± 0.012 3.740 ± 0.304 0.982 ± 0.007 4.554 ± 0.788 0.935 ± 0.087 37.795 ± 1.801 0.960 ± 0.006
PAN-Crafter 0.920 ± 0.027 0.039 ± 0.020 0.043 ± 0.011 3.570 ± 0.286 0.984 ± 0.008 4.426 ± 0.740 0.938 ± 0.087 38.195 ± 1.597 0.963 ± 0.005

Table 8. Quantitative comparison of deep learning-based PS methods on the QB dataset. Red indicates the best performance.



WV2 Dataset Full-Resolution (Unseen satellite dataset) Reduced-Resolution (Unseen satellite dataset)
Methods HQNR↑ Ds↓ Dλ↓ ERGAS↓ SCC↑ SAM↓ Q8↑ PSNR↑ SSIM↑
PanNet [57] 0.875 ± 0.064 0.032 ± 0.005 0.096 ± 0.066 5.481 ± 0.326 0.876 ± 0.018 7.040 ± 0.417 0.786 ± 0.084 27.120 ± 1.827 0.770 ± 0.053
MSDCNN [58] 0.862 ± 0.050 0.029 ± 0.013 0.113 ± 0.041 4.930 ± 0.378 0.905 ± 0.009 5.898 ± 0.490 0.812 ± 0.090 27.901 ± 1.812 0.804 ± 0.040
FusionNet [50] 0.862 ± 0.034 0.038 ± 0.005 0.104 ± 0.032 5.100 ± 0.367 0.902 ± 0.011 6.118 ± 0.533 0.786 ± 0.083 27.616 ± 1.765 0.788 ± 0.042
LAGNet [20] 0.902 ± 0.045 0.024 ± 0.018 0.076 ± 0.032 5.133 ± 0.432 0.885 ± 0.015 6.094 ± 0.559 0.792 ± 0.081 27.525 ± 2.008 0.777 ± 0.054
S2DBPN [61] 0.813 ± 0.066 0.065 ± 0.019 0.129 ± 0.080 5.703 ± 0.257 0.915 ± 0.011 7.063 ± 0.421 0.805 ± 0.092 26.748 ± 1.892 0.804 ± 0.041
DCPNet [62] 0.797 ± 0.134 0.034 ± 0.022 0.176 ± 0.129 5.507 ± 0.264 0.931 ± 0.009 10.174 ± 1.115 0.843 ± 0.094 27.063 ± 1.541 0.855 ± 0.021
PanDiff [30] 0.932 ± 0.019 0.043 ± 0.010 0.026 ± 0.019 4.291 ± 0.418 0.916 ± 0.010 5.430 ± 0.601 0.840 ± 0.087 28.964 ± 1.709 0.832 ± 0.033
TMDiff [52] 0.874 ± 0.013 0.088 ± 0.021 0.042 ± 0.020 5.157 ± 0.604 0.875 ± 0.008 6.087 ± 0.786 0.777 ± 0.079 27.473 ± 1.634 0.762 ± 0.045
CANConv [13] 0.876 ± 0.044 0.060 ± 0.022 0.068 ± 0.049 4.328 ± 0.413 0.918 ± 0.008 5.481 ± 0.595 0.841 ± 0.087 29.005 ± 1.719 0.837 ± 0.031
PAN-Crafter 0.942 ± 0.019 0.036 ± 0.010 0.022 ± 0.008 4.169 ± 0.397 0.924 ± 0.009 5.078 ± 0.561 0.846 ± 0.085 29.276 ± 1.621 0.839 ± 0.029

Table 9. Quantitative comparison of deep learning-based PS methods on the unseen WV2 dataset. All models are trained on WV3 and
evaluated on WV2 to assess real-world generalization. Red indicate the best performance in each metric.

Methods LAGConv [20] S2DBPN [61] PanDiff [30] DCPNet [62] TMDiff [52] CANConv [13] PAN-Crafter
Time (s) 0.004 0.005 2.955 0.109 9.997 0.451 0.009
Memory (MB) 3360.1 2444.0 2383.6 7386.8 10147.4 2777.6 1751.9
FLOPs (G) 8.43 158.94 62.07 105.40 1284.42 52.21 79.03
Params. (M) 0.15 16.19 9.52 1.414 154.10 0.79 7.17

Table 10. Computational efficiency comparison of deep learning-based PS methods. We report inference time (s), memory usage (MB),
FLOPs (G), and parameter count (M).

WV3 Dataset Full-Resolution Reduced-Resolution Inference
Time↓ (s)

Memory↓
(GB)CM3A MARs HQNR↑ Ds↓ Dλ↓ ERGAS↓ SCC↑ SAM↓ Q8↑ PSNR↑ SSIM↑

0.948 0.035 0.018 2.232 0.985 2.980 0.913 37.245 0.972 0.006 1.537
✓ 0.949 0.035 0.016 2.212 0.985 2.970 0.915 37.285 0.973 0.007 1.556

✓ 0.956 0.028 0.017 2.122 0.987 2.873 0.919 37.602 0.974 0.009 1.701
✓ ✓ 0.958 0.027 0.016 2.040 0.988 2.787 0.922 37.956 0.976 0.009 1.711

Table 11. Ablation studies on CM3A and MARs on the WV3 dataset.

GF2 Dataset Full-Resolution Reduced-Resolution
CM3A MARs HQNR↑ Ds↓ Dλ↓ ERGAS↓ SCC↑ SAM↓ Q4↑ PSNR↑ SSIM↑

0.959 0.021 0.021 0.632 0.992 0.723 0.984 43.476 0.984
✓ 0.953 0.025 0.023 0.624 0.992 0.718 0.984 43.618 0.984

✓ 0.945 0.032 0.023 0.574 0.993 0.651 0.986 44.298 0.986
✓ ✓ 0.964 0.017 0.020 0.552 0.994 0.596 0.988 45.076 0.988

Table 12. Ablation studies on CM3A and MARs on the GF2 dataset.

QB Dataset Full-Resolution Reduced-Resolution
CM3A MARs HQNR↑ Ds↓ Dλ↓ ERGAS↓ SCC↑ SAM↓ Q4↑ PSNR↑ SSIM↑

0.856 0.086 0.064 4.907 0.977 5.200 0.923 35.476 0.947
✓ 0.879 0.062 0.063 4.869 0.975 5.168 0.922 35.538 0.947

✓ 0.896 0.047 0.060 3.857 0.980 4.661 0.930 37.557 0.959
✓ ✓ 0.920 0.039 0.043 3.570 0.984 4.426 0.938 38.195 0.963

Table 13. Ablation studies on CM3A and MARs on the QB dataset.

α β,γ
WV3 / GF2 / QB Datasets

HQNR↑ ERGAS↓ SAM↓ PSNR↑
0.945 / 0.951 / 0.908 2.214 / 0.623 / 3.758 2.901 / 0.642 / 4.523 37.210 / 44.321 / 37.842

✓ 0.949 / 0.957 / 0.915 2.150 / 0.589 / 3.669 2.829 / 0.618 / 4.472 37.562 / 44.758 / 38.021
✓ 0.947 / 0.956 / 0.913 2.185 / 0.601 / 3.690 2.841 / 0.624 / 4.488 37.433 / 44.612 / 37.935

✓ ✓ 0.958 / 0.964 / 0.920 2.040 / 0.552 / 3.570 2.787 / 0.596 / 4.426 37.956 / 45.076 / 38.195

Table 14. Ablation studies on α, β, and γ on the WV3, GF2, and QB datasets.



k
WV3 / GF2 / QB Datasets

HQNR↑ ERGAS↓ SAM↓ PSNR↑ Time↓ Memory↓
3 0.958 / 0.964 / 0.920 2.040 / 0.552 / 3.570 2.787 / 0.596 / 4.426 37.956 / 45.076 / 38.195 0.009 1.711
5 0.953 / 0.965 / 0.919 2.021 / 0.555 / 3.577 2.785 / 0.600 / 4.433 37.966 / 45.001 / 38.201 0.019 3.429
7 0.955 / 0.961 / 0.921 2.033 / 0.553 / 3.575 2.790 / 0.599 / 4.429 37.949 / 45.010 / 38.190 0.042 5.243

Table 15. Ablation studies on k on the WV3, GF2, and QB datasets.

Training
Strategy

WV3 / GF2 / QB Datasets
HQNR↑ ERGAS↓ SAM↓ PSNR↑

w/o MARs 0.949 / 0.953 / 0.879 2.212 / 0.624 / 4.869 2.970 / 0.718 / 5.168 37.285 / 43.618 / 35.538
Two-stage 0.945 / 0.953 / 0.890 2.199 / 0.602 / 4.551 2.899 / 0.688 / 4.907 37.345 / 43.921 / 36.081
w/ MARs 0.958 / 0.964 / 0.920 2.040 / 0.552 / 3.570 2.787 / 0.596 / 4.426 37.956 / 45.076 / 38.195

Table 16. Ablation studies on training strategy on the WV3, GF2, and QB datasets.

Layer
Type

WV3 / GF2 / QB Datasets
HQNR↑ ERGAS↓ SAM↓ PSNR↑ Time↓ Memory↓

Attn. 0.948 / 0.959 / 0.856 2.232 / 0.632 / 4.907 2.980 / 0.723 / 5.200 37.245 / 43.476 / 35.476 0.006 1.537
Conv. 0.937 / 0.943 / 0.850 2.322 / 0.741 / 5.142 3.120 / 0.831 / 5.463 36.988 / 42.590 / 35.218 0.004 1.209

Table 17. Ablation studies on layer type on the WV3, GF2, and QB datasets.
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