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[25]Abstract

In this supplementary material, we commence by provid-
ing a comprehensive description of our experimental se-
tups (Appendix A), including dataset descriptions and im-
plementation/extension details. Further, we introduce more
background of Multi-Objective Optimization (MOO) in Ap-
pendix B for a better understanding. Additional explana-
tions regarding our build MOO problem with intuitive ex-
amples are presented in Appendix C. The proofs of theoret-
ical analyses are provided in Appendix E. Further Analyses
of our MOO-AD method are in Appendix F.

A. Detailed Experimental Setups
A.1. Dataset Descriptions and Pre-Processing
In line with the evaluation protocols established in prior
works [25, 33], we conduct adversarially robust knowledge
distillation on the ImageNet training set [8] and assess its
in-distribution robustness on the ImageNet validation set,
commonly used as a test benchmark. For zero-shot (out-
of-distribution) robustness evaluations, we test on addi-
tional 14 datasets that span diverse image recognition tasks:
STL-10 [5], CIFAR-10/100 [16], Caltech-101/256 [10, 11],
FGVC [24], Flower102 [28], Food101 [2], OxfordPets [29],
and StandfordCars [15], DTD [4], EuroSAT [12], PCAM
[36], and SUN397 [38]. For data pre-processing, input im-
ages are resized to 224×224 (except for CIFAR-10/100 and
STL-10) and undergo center cropping before processing.

In addition to zero-shot classification, we further ex-
tend our MOO-AD method to vision-language understand-
ing and medical image analysis. Specifically, we focus on
the Flickr dataset [30] for bidirectional image-text retrieval
and the Nocaps dataset [1] for image captioning. For med-
ical image analysis, we conduct robustness evaluations on
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three standard multi-label radiology datasets: ChestX-ray14
[37], CheXpert [13], and PadChest [3].

A.2. Further Implementation Detials
Standard configurations. For adversarially robust knowl-
edge distillation, we adopt the CLIP architecture [31] with
ViT-L/14 as the teacher model and ViT-B/32 & ResNet-
50/101 as student models. The teacher VLM is obtained
through the standard adversarial fine-tuning, i.e., TeCoA
[25]. Following [33], we fully optimize the vision encoder’s
parameters of the student VLM using AdamW [22] with
the learning rate initialized at 1×10−5 using a cosine de-
cay schedule for 10 epochs. In the case of Visual Prompt
Tuning (VPT) [14], an efficient fine-tuning strategy, we in-
corporate 100 learnable tokens into the vision module of
CLIP, setting the learning rate to 40. MOO-adversaries are
generated with 10 iterations under the ℓ∞ threat model with
the radius ϵI = 2/255. The MOO weighting factors are set
γ1 = γ2 = 1.0 for balanced optimization. Additionally, the
loss weighting coefficients are λ = 2.5 and β = 4.0. All
the hyper-parameter configurations are searched on a 10%
subset of CIFAR-10 and then applied directly to adversarial
distillation using ImageNet across diverse settings.
BLIP extension configurations. For evaluation metrics,
we use recall@1 for Text Retrieval (TR) and Image Re-
trieval (IR) for both clean and adversarial examples. In the
context of image captioning evaluations, CIDEr measures
the similarity of a generated sentence against a set of ground
truth sentences written by humans. We focus on adversarial
examples of the perturbation radius ϵI = 1/255 generated
by 20-step PGD attacks [23] during both training and eval-
uations, using the references/captions as labels. In line with
[18], we directly integrate the Image-Text Contrastive (ITC)
loss into our MOO-AD. For other adversarial fine-tuning
approaches, we additionally incorporate the adversarial op-
timization of the ITC loss, the Image-Text Matching (ITM)
loss, and the Language Modeling (LM) loss. We focus on
the ViT-B/16-based BLIP architecture for evaluations.



Medical CLIP extension configurations. The Medical
CLIP expansion follows CheXzero [35] by leveraging a
radiology-specific CLIP model with a ViT/B-16 backbone.
Note that the text encoder is replaced by BioBERT [17], a
specialized biomedical language model optimized for text
mining in medical scenarios. During the adversarial learn-
ing/distillation stage, we utilize a comprehensive chest X-
ray benchmark including detailed radiology reports. At the
inference stage, we evaluate the robust VLMs on ChestX-
ray14 [37], CheXpert [13], and PadChest [3]. We report
the Area Under the Curve (AUC) metric for both legitimate
medical data and their adversarial counterparts (PGD-20,
ϵI=1/255).
Repulsive term in the MOO solver. To further keep the
diversity of the MOO adversaries, we also add a repulsive
potential term [32] into the generation process of the MOO-
adversaries, which is
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as part of the loss function to guide the it-

erative gradient ascent process.

B. Background of Multiobjective Optimization
Commonly, a MOO problem can be formulated as:

min : f(x) = {f1(x), . . . , fq(x)},
s.t. x ∈ Ω ⊆ Rd,

(15)

where fl(x), (l ∈ {1, . . . , q}) is the lth objective function, q
is the number of objectives, x is the decision vector, Ω is the
decision space, d is the dimensions of the decision vector.
Some key concepts associated with the MOO problem are
introduced as follows [6]:
• Pareto Dominance: For decision vectors xa and xb,

if ∀l ∈ {1, 2, . . . , q}, fl(xa) ≤ fl(xb) and ∃l′ ∈
{1, 2, . . . , q}, fl′(xa) < fl′(xb), xa is said to Pareto
dominate xb.

• Pareto Optimal Solution: If no decision vector in Ω Pareto
dominates xa, then xa is a Pareto optimal solution.

• Pareto Set: The set of all Pareto optimal solutions forms
the Pareto set in decision space.

• Pareto Front: The image of the Pareto set in the objective
space forms the PF.
Unlike single-objective optimization, an MOO problem

does not have a single solution that simultaneously mini-
mizes or maximizes all objectives [6]. Instead, the goal is
to identify a representative set of Pareto-optimal solutions
that form the PF, representing the best achievable trade-
offs in the objective space. Over the past few decades,
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Figure 6. Examples of diversity preservation in the proposed
multi-objective modeling approach. In the example, we show the
representation of adversaries in the objective spaces correspond-
ing to the constructed multi-objective optimization problem. We
assuming there are two batches, X1 = {x̂1

1, . . . , x̂
5
1} and X2 =

{x̂1
2, . . . , x̂

5
2}, each consisting of five adversaries. In X1, the con-

tained adversaries belong to five different classes, whereas in X2,
all adversaries belong to a single class (class 1). Assume that for
all adversaries in X1 and X2, their category membership is abso-
lute, i.e., [pS(x̂

′)]c = 1, c = argmaxc[pS(x̂
′)]c, x̂

′ ∈ X1 ∪ X2,
and the constraints in (5) is fully guaranteed. (a) Representation
of adversaries in the objective space for the batch X1. (b) Repre-
sentation of adversaries in the objective space for the batch X2.

MOO has been extensively studied in the optimization field.
Evolutionary algorithms [7, 26, 27, 40–42] are a promi-
nent class of methods for solving MOO problems. While
their population-based search and inherent parallelism have
proven effective, their inability to leverage gradient infor-
mation limits their efficiency. Recently, gradient-based
MOO optimizers have gained significant attention in vari-
ous machine learning tasks [19, 21, 32, 34]. By incorpo-
rating gradient information, these methods enable efficient
optimization in neural network-based problems, facilitat-
ing applications such as multi-task learning [34] and neural
combinatorial optimization [20].

C. Additional Explanation on the Built MOO
Problem

We present an example to intuitively illustrate diversity
in the objective space in terms of adversarial samples.
Consider two batches, X1 = {x̂1

1, . . . , x̂
5
1} and X2 =

{x̂1
2, . . . , x̂

5
2}, each containing five adversarial samples. In

X1, the samples belong to five different classes, whereas in
X2, all samples belong to a single class (class 1). Clearly,
X1 exhibits greater class diversity than X2 in terms of class
labels. Assuming the class membership of each sample
is absolute ([pS(x̂

′)]c = 1, c = argmaxc[pS(x̂
′)]c, x̂

′ ∈
X1 ∪ X2), and the constraints in Eq. (5) are fully satis-
fied, the expected predicted class of a sample x̂ is given
by F1(x̂

′) = argmaxc[pS(x̂
′)]c. Setting C = 5, the corre-

sponding representations in the objective space are shown in
Figure 6. As depicted in Figure 6a, X1, with high class-level
diversity, also exhibits broad coverage of the Pareto front
in the established MOO problem, ensuring diversity in the



objective space. In contrast, all five adversaries in X2 over-
lap in the objective space, as shown in Figure 6b, demon-
strating that insufficient class diversity leads to a failure in
maintaining diversity in the objective space. This example
highlights that in the formulated MOO problem, preserv-
ing diversity in the objective space corresponds to ensuring
diversity among adversarial samples within a batch, consid-
ering class labels. Diversity preservation has been exten-
sively studied in MOO, with well-established techniques.
By integrating these strategies into our MOO formulation,
the proposed method effectively maintains the diversity of
adversarial samples.

In the above example, we primarily use samples from
completely different classes to illustrate MOO-AD’s ability
to maintain diversity, and such examples may also be gener-
ated by targeted adversaries. However, since F1 represents
the expected likelihood that an adversarial sample belongs
to a certain class, it is inherently a continuous value. By
leveraging MOO, this continuous nature enables MOO-AD
to generate adversarial samples that lie at the intersection of
multiple decision boundaries (for example, [pS ]1 = 0.5 and
[pS ]2 = 0.5). Consequently, adversarial samples generated
by MOO-AD may provide more comprehensive coverage
of the decision boundaries of student models compared to
targeted adversaries, thereby contributing to the training of
more robust models.

D. Robust Risk with MOO-Adversaries
D.1. Robust Risk Decomposition
Following [39], we decompose the robust risk Rrob into
natural and boundary components. For a student VLM with
predicted class p∗

S(x) = argmaxc[pS(x)]c, the robust risk
on a set V is defined as:

Definition 1 (Robust Risk [39]). For sample-label pairs
(x, c) drawn from V , the robust risk and its two compo-
nents—natural and boundary risks—are defined as follows:

Rrob(pS ;V) :=E(x,c)∼V [1(∃x̂ ∈ B(x, ϵ) :p∗
S(x̂) ̸=c)],

Rnat(pS ;V) :=E(x,c)∼V [1(p
∗
S(x) ̸= c)], (16)

Rbdy(pS ;V) :=E(x,c)∼V [1(∃x̂ ∈ B(x, ϵ) :p∗
S(x̂) ̸=p∗

S(x)=c)],

where ϵ is the ℓ∞-norm perturbation radius around x1.
Also, Rrob(pS ;V)=Rnat(pS ;V)+Rbdy(pS ;V).

D.2. Extension to MOO-Adversarial Examples
We then extend this decomposition to incorporate MOO-
based adversarial examples generated via our proposed op-
timization strategy during robust knowledge distillation.

Definition 2. Let Mx denote a set of MOO-adversarial ex-
amples generated from each sample-label pair (x, c) ∈ D,

1Note that the set V may consist of both clean and adversarial data,
hence the sample-label pair (x, c) can represent either type.

i.e., Mx = ∪(x,c)∈D Mx

(
(x, c)

)
. We separate Mx into

two disjoint subsets: M✗
x = {(x, c) ∈ Mx : p∗

S ̸= c} and
M✓

x = {(x, c)∈Mx :p
∗
S = c} that contain incorrectly and

correctly classified MOO-adversaries, respectively.

D.3. Robust Risk Bound Minimization
Building upon the robust risk bound analysis of intermedi-
ate adversarial examples introduced by [9], we extend their
theoretical framework to the MOO-adversarial setting by
replacing intermediate adversaries with MOO-adversarial
examples and deriving new bounds tailored to this scenario:

Theorem 2. Let D∪Mx denote the original dataset com-
bined with the MOO-adversaries. The robust risk gap com-
pared to using only the original dataset D is given as:
Rrob(D∪Mx)−Rrob(D)= (17)∣∣M✗

x

∣∣(Rrob(M✗
x)−Rrob(D))

|D|+|Mx|
+

∣∣M✓
x

∣∣(Rrob(M✓
x)−Rrob(D))

|D|+ |Mx|
Proof. See Appendix E.2.
Theorem 3. Integrating MOO-adversaries into the robust
risk Rrob(D∪Mx) addresses an upper bound on the stan-
dard robust risk Rrob(D) of the original dataset D, i.e.,
Rrob(D∪Mx)>Rrob(D) given that κ≥Rnat(D), where
κ=Rbdy(M✓

x)−Rbdy(D)≥0 is the boundary-risk gap.
Proof. See Appendix E.3.

E. Theoretical Analyses
E.1. Proof of Theorem 1
Proof. According to ||F(xa)− F(xb)|| ≥ δF, we have

||F(xa)− F(xb)||

=
√
(F1(xa)− F1(xb))2 + (F2(xa)− F2(xb))2

=
√
2(F1(xa)− F1(xb))2 ≥ δF.

Then, we can get |F1(x
a) − F1(x

b)| ≥
√
2
2 δF. As F1

is L-Lipschitz continuous, then we have L||xa − xb|| ≥
||F(xa) − F(xb)|| ≥

√
2
2 δF. As a result, we get the corre-

sponding conclusion ||xa − xb|| ≥
√
2δF
2L .

E.2. Proof of Theorem 2
Proof. By decomposing MOO-adversaries Mx into M✗

x ∪
M✓

x based on the VLM classification, the robust risk gap
can be expressed as an average of their respective robust
risks, each weighted by its cardinality below:

Rrob(D∪Mx)−Rrob(D)=Rrob(D∪M✗
x∪M✓

x)−Rrob(D)

=
|D|Rrob(D)+

∣∣M✗
x

∣∣Rrob(M✗
x)+

∣∣M✓
x

∣∣Rrob(M✓
x)

|D|+
∣∣M✗

x

∣∣+∣∣M✓
x

∣∣
−

|D|+
∣∣M✗

x

∣∣+∣∣M✓
x

∣∣
|D|+

∣∣M✗
x

∣∣+∣∣M✓
x

∣∣Rrob(D) (18)

=

∣∣M✗
x

∣∣(Rrob(M✗
x)−Rrob(D))

|D|+ |Mx|
+

∣∣M✓
x

∣∣(Rrob(M✓
x)−Rrob(D))

|D|+ |Mx|
.



Table 13. Comparison of diverse adversary mixing configurations
in MOO-AD for average clean and robust accuracy on 15 datasets.

Adversary Mixing Configuration Clean PGD AA
Untargeted & MOO Adversaries 56.48 33.25 32.08
Targeted & MOO Adversaries 57.65 34.18 32.83

Untargeted & Targeted & MOO Adversaries 58.15 34.79 33.42
MOO-Adversaries Only (Ours) 58.96 35.70 34.16

E.3. Proof of Theorem 3
Proof. To establish that Rrob(D ∪Mx)≥Rrob(D), it suf-
fices to show two inequalities hold below: (i) Rrob(M✗

x)−
Rrob(D)≥0 & (ii) Rrob(M✓

x)−Rrob(D)≥0.
We first address the condition (i). By Definition 1 of

the robust and natural risks, any instance in M✗
x is mis-

classified by formulation; consequently, Rrob(gθ;M✗
x) =

Rnat(gθ;M✗
x)=1≥Rrob(gθ;D) ≥ Rnat(gθ;D). Follow-

ing Definition 2, Rnat(gθ;M✗
x)=1 as all clean samples of

M✗
x are misclassified. Since boundary risk Rbdy requires

correctly classified clean samples, it vanishes for the mis-
classified set. This remains consistent with M✗

x being en-
tirely misclassified and thus confirms condition (i).

We next examine the condition (ii), i.e., Rrob(M✓
x) −

Rrob(D). By Definition 2, all the elements in M✓
x are

correctly classified, thus the natural risk Rnat(M✓
x) = 0.

However, the boundary risk Rbdy(M✓
x) can be nonzero, as

small perturbations to correctly classified legitimate sam-
ples can shift them across the decision boundary. Let
κ=Rbdy(M✓

x)−Rbdy(D)≥0 represent the boundary risk
gain. Consequently, if κ ≥ Rnat(D), we obtain the con-
dition (ii). Putting parts (i) and (ii) together completes the
argument, showing that Rrob(D∪Mx) is an upper bound
of the adversarially robust risk Rrob(D).

F. Further Analyses of Our MOO-AD Method

F.1. Impact of Adversary Mixing in Distillation.
Beyond using the MOO-adversaries alone, we examine
whether incorporating targeted and/or untargeted adver-
saries enhances robustness transfer. Table 13 presents the
distillation results for different adversary mixing configura-
tions in MOO-AD. Interestingly, we find that introducing
additional (targeted/untargeted) adversaries during distilla-
tion deteriorates zero-shot adversarial robustness. We at-
tribute this robustness degradation to the potential disrup-
tion of adversarial diversity, which implicitly compromises
the effectiveness of robustness transfer.

F.2. Analyses of In-Distribution and Out-Of-
Distribution Robustness.

We here analyze the inherent relationship between the pre-
set weights (γ1 and γ2) in the MOO solver and the trade-off

Table 14. Comparison of γ1&γ2 values in MOO-AD, with OOD
evaluation averaged over SUN397, Flower102, and CIFAR-100.

γ1&γ2 Values ImageNet Out-Of-Distribution
Clean PGD AA Clean PGD AA

γ1 = γ2 = 0.5 58.14 35.93 35.19 56.30 25.12 24.37
γ1 = γ2 = 1.0 59.28 36.58 35.72 55.74 24.74 24.05
γ1 = γ2 = 2.0 59.67 37.02 36.13 54.92 24.28 23.69

between the in-distribution and out-of-distribution robust-
ness. To ensure a consistent data view across the teacher
and student VLMs during distillation, we set γ1 = γ2. Ac-
cording to Table 14, we report the performance in both
in-distribution (ImageNet) and out-of-distribution (average
over SUN397, Flower102, and CIFAR-100) scenarios. Typ-
ically, Increasing both γ1 and γ2 enhances the disruptive ca-
pability of adversaries, leading to better in-distribution ro-
bustness. On the other hand, reducing them facilitates a
more diverse MOO-adversary generation, resulting in im-
proved out-of-distribution adversarial robustness.
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