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A. Experimental Settings

Benchmark Datasets: We conduct comparison experiments
on three video instance segmentation datasets (i.e., YouTube-
VIS 2019* [77], YouTube-VIS 2021† [77] and OVIS‡ [55])
to verify the effectiveness of our HVPL model in address-
ing the CVIS problem. YouTube-VIS 2019 [77] is the first
dataset proposed to perform video instance segmentation
and it has 40 semantic categories. we consider 20-2 and 20-5
settings on YouTube-VIS 2019. The 20-2 and 20-5 settings
respectively indicate first learning 20 classes, followed by
ten continual tasks, each with 2 new classes (T = 11); and
followed by 4 consecutive tasks, each with 5 new classes
(T = 5). YouTube-VIS 2021 [77] comprises the same se-
mantic categories with YouTube-VIS 2019, but has more con-
fusing trajectories than YouTube-VIS 2019. On YouTube-
VIS 2021, we set 30-10 and 20-4 under the CVIS setting.
The settings of 30-10 and 20-4 involve learning 30 classes
followed by one task with 10 new classes (T = 2), and
learning 20 classes followed by 5 tasks with 4 new classes
each (T = 6). OVIS [55], which contains 25 classes, has
distinct characteristics compared to YouTube-VIS 2021 [77]:
each video features more instances with heavy occlusions
and diverse appearances. On OVIS [55], we set 15-5 and
15-10 for the CVIS problem. The settings of 15-5 and 15-10
involve learning 15 classes followed by 2 task with 5 new
classes each (T = 3), and learning 15 classes followed by
one task with 10 new categories (T = 2).

Implementation Details: For the network architecture,
we introduce Mask2Former [10] as the frame-level detec-
tor, where the backbone is ResNet-50 [32], the Transformer
decoder Dtrans includes 9 MSA layers, and the number of
scales in the pixel decoder Dpixel is 3. Besides, the video con-
text decoder Dvideo consists of 6 GSS layers and 3 MSA lay-
ers. All network parameters of the pretrained Mask2Former
[10] are frozen during the training phase. Following [16],
we set the feature dimensions as D = 256 and the number of
heads in each MSA layer as 8. For the lengths of task-specific
frame and video prompts, we set Lf

p = 100, Lv
p = 100 for

the first VIS task and set Lf
p = 10, Lv

p = 10 to learn the
t-th (t ≥ 2) incremental task. Furthermore, we adopt the
same preprocessing strategy for input video frames during
training and inference as proposed in [33]. We optimize the
parameters of the video context decoder Dvideo at the first
task, and freeze them when t ≥ 2. If the learning of the
(t−1)-th task is completed, we will store the feature space

*https://codalab.lisn.upsaclay.fr/competitions/6064
†https://codalab.lisn.upsaclay.fr/competitions/7680
‡https://codalab.lisn.upsaclay.fr/competitions/4763

Algorithm 2: Optimization of The Proposed HVPL.
Initialize: The pretrained Mask2Former and a sequence of

video instance segmentation tasks T = {T t}Tt=1;
▷ Training for The t-th Task:
Initialize the frame and video prompts {Pt

frm,Pt
vid};

Initialize the classifier and mask heads {Γt
c,Γ

t
m};

for (xt
i,y

t
i) in T t do

if t ≥ 2 then
Update task-specific video prompt Pt

vid, classifier
and mask heads (Γt

c,Γ
t
m) via the loss in [33];

Compute the original gradient△P used to update
the task-specific frame prompt Pt

frm;
Conduct SVD on the feature space Ot−1;
Obtain the orthogonal feature space V̂t−1

0 ;
Obtain△P∗ via gradient projection in Eq. (11);
Use△P∗ to update the frame prompt Pt

frm;

else
Update learnable parameters via the loss in [33];

Delete the feature space Ot−1 of the (t−1)-th task;
Construct the feature space Ot for the t-th task;
Return: {Pt

frm,Pt
vid,Γ

t
c,Γ

t
m,Ot}.

▷ Inference:
Initialize: All task-specific frame and video prompts
{Pt

frm,Pt
vid}Tt=1, along with the classifier and mask

heads {Γt
c,Γ

t
m}Tt=1, learned so far;

Obtain P∗
frm = [P1

frm;P2
frm; · · · ;PT

frm] ∈ RTLf
p×D;

Obtain P∗
vid = [P1

vid;P
2
vid; · · · ;PT

vid] ∈ RTLv
p×D;

Obtain Γ∗
c = [Γ1

c ,Γ
2
c , · · · ,ΓT

c ] ∈ RD×(|Y1:t|+1);
Return: Predictions about masks and class probabilities.

Ot−1 in advance, and delete the feature space Ot−2 learned
at the (t−2)-th task for saving memory costs. Then Ot−1

is utilized to learn the t-th task. To balance the forgetting
of old tasks and the learning of new tasks, we empirically
set ξ = 0.7 to determine the orthogonal feature space V̂t−1

0

of the (t−1)-th task. Additionally, we utilize the Adam op-
timizer (β1 = 0.9, β2 = 0.999) to optimize the proposed
HVPL model, where the initial learning rate is 5.0× 10−5.
The random seed is set to 42 in this paper.

Comparative Methods: To exhibit the effectiveness of
the proposed HVPL model, we introduce some state-of-the-
art continual learning methods for comparison experiments.
Specifically, MiB [6] devises a novel objective function
alongside a tailored classifier initialization strategy to ad-
dress the issue of background shift. CoMFormer [7] utilizes
a new adaptive distillation loss combined with a mask-based
pseudo-labeling technique to effectively mitigate forgetting.
NeST [76] proposes a classifier pretuning method, which
is applied prior to the formal training process. Instead of
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Figure 5. Comparison results of some selected video frames from YouTube-VIS 2019 [77] under the 20-5 setting (zoom in for a better view).
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Figure 6. Comparisons of some selected video frames from YouTube-VIS 2021 [77] under the 30-10 setting (zoom in for a better view).

directly adjusting the parameters of new classifiers, NeST
learns a transformation from old classifiers to generate new
classifiers for initialization. BalConpas [8] introduces a class-
proportional memory strategy that ensures the class distribu-
tion in the replayed sample set aligns with the distribution
in the historical training data. ECLIPSE [41] devises an effi-
cient method for continual panoptic segmentation built on
visual prompt tuning. For fair comparisons, all comparative
methods employ the same backbone and data augmentation
strategy for training.

B. Optimization
The optimization pipeline of our HVPL model is presented
in Algorithm 2. During training, given a vide-label pair

(xt
i,y

t
i) ∈ T t at the t-th (t ≥ 2) task, we first update the task-

specific video prompt Pt
vid, the classifier and mask heads

(Γt
c,Γ

t
m) via optimizing the loss proposed in [33]. Then

we compute the original gradient △P used to update the
task-specific frame prompt Pt

frm, and conduct SVD on the
feature space Ot−1 of the (t−1)-th task. After obtaining the
orthogonal feature space V̂t−1

0 , we perform gradient projec-
tion to derive △P∗ = △PV̂t−1

0 (V̂t−1
0 )⊤ via Eq. (11), and

employ △P∗ to update the task-specific frame prompt Pt
frm.

During inference, we first concatenate all frame prompts
{Pt

frm}Tt=1 as P∗
frm = [P1

frm;P
2
frm; · · · ;PT

frm] ∈ RTLf
p×D,

all task-specific video prompts {Pt
vid}Tt=1 as P∗

vid =

[P1
vid;P

2
vid; · · · ;PT

vid] ∈ RTLv
p×D, and all classifier heads

{Γt
c}Tt=1 as Γ∗

c = [Γ1
c ,Γ

2
c , · · · ,ΓT

c ] ∈ RD×(|Y1:t|+1). Sub-



sequently, we utilize them to predict masks and class proba-
bilities for a given test video.

C. Qualitative Comparisons

As shown in Figs. 5–6, to evaluate the performance of our
proposed model in various CVIS scenarios, we present the
visualization results of selected video frames from YouTube-
VIS 2019 and YouTube-VIS 2021 [77]. The following ob-
servations can be drawn from the results: 1) Significant Im-
provement Over Prompt Learning-Based Methods: The pro-
posed model outperforms the prompt learning-based method
ECLIPSE [41] across all settings, demonstrating superior
capability in addressing CVIS problem. Notably, in complex
backgrounds and dynamic scenarios, our model mitigates
catastrophic forgetting at both the frame and video levels.
2) Better Performance Than Knowledge Distillation-Based
Methods: Compared to knowledge distillation methods such
as CoMFormer [7], NeST [76] and BalConpas [8], our model
achieves more precise instance segmentation, especially in
cases involving multiple or small objects. This highlights
the effectiveness of the task-specific video prompt and the
video context decoder in capturing global video contexts to
tackle catastrophic forgetting. These visual results further
validate the effectiveness of the proposed model in tackling
forgetting of old classes at both the frame and video levels.

D. Societal Impact and Limitations

Societal Impact: Continual Video Instance Segmentation
(CVIS) is an emerging research field at the intersection of
computer vision and continual learning, focusing on the abil-
ity to segment, track, and incrementally learn from objects
in video streams over time. Unlike traditional video instance
segmentation, which operates on fixed, predefined datasets,
CVIS emphasizes continual learning, enabling models to
incorporate new information dynamically without retrain-
ing from scratch. Continual Video Instance Segmentation
(CVIS) has the potential to significantly influence various
aspects of society by enabling machines to dynamically learn
and adapt from video data over time.
• Improved Automation and Efficiency: CVIS enhances au-

tomation in applications like autonomous vehicles, smart
cities, and industrial monitoring, enabling real-time adap-
tation to changing environments and improving efficiency.

• Enhanced Public Safety: By enabling better anomaly de-
tection and situational awareness in video surveillance and
management, CVIS contributes to safer communities.

• Environmental and Wildlife Monitoring: CVIS can sup-
port long-term ecological studies, enabling the tracking of
wildlife and monitoring of environmental changes without
continuous human intervention.
Limitations: Although the proposed HVPL model can

address the CIVS problem by alleviating catastrophic forget-

ting from both the image-level and video-level perspectives,
it may struggle to continually learn large-scale semantically
similar tasks. Therefore, we will explore how to increase the
scalability of our proposed HVPL model in the future.


