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1. Different Distillation Methods

Figure 1 summarizes the comparison of our LLM-assisted
distillation with two widely used distillation methods:
feature-based distillation [4], relation-based distillation [7,
9]. The effectiveness of our LLM-assisted logits-based dis-
tillation lies in its ability to transfer the teacher model’s
knowledge to the student model by constructing a category-
wise probability distribution grounded in LLM-generated
text descriptions of categories. This approach allows the
model to better align the teacher’s knowledge with the spe-
cific requirements of fine-grained downstream tasks. We
attribute the superior performance of our method to the use
of category-wise probability distributions, which not only
preserve the discriminative power of the teacher model but
also adapt its knowledge to fine-grained scenarios with the
assistance of LLM-generated descriptive guidance.

2. Influence of the Number of Images

Based on the experimental results in Figure 2, which exam-
ine the impact of the number of training images on model
performance, we observe that as the number of training
images increases, both our method, LEAD, and the base-
line, MoCo, exhibit gradual improvements in Top-1 image
classification accuracy. However, LEAD consistently out-
performs MoCo across all data scales. This demonstrates
that LEAD is capable of effectively extracting fine-grained
features even under limited data conditions, fully utiliz-
ing the information from each image, thereby exhibiting
superior generalization ability and robustness.In contrast,
MoCo’s performance is constrained in small-sample scenar-
ios, where it struggles to capture subtle differences between
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Table 1. Performance of using different LLMs.

LLM Classification Image Retrieval

Top-1 Top-5 R-1 R-5 mAP

DeepSeek 78.79 95.46 68.29 89.32 44.63
GPT-3(Ours) 78.44 95.30 68.17 88.37 44.43

fine-grained categories. Furthermore, when the number of
training images reaches a larger scale (e.g., 5000 images
or more), the performance improvement of LEAD becomes
even more pronounced. This highlights LEAD’s advantage
in leveraging the multimodal capabilities of LLM and CLIP,
enabling it to further explore the potential of fine-grained
features in large-scale data settings. These results validate
the effectiveness and superiority of our proposed method in
fine-grained visual representation learning tasks.

3. Influence of Using Different LLMs

We evaluated the performance of our method using differ-
ent LLMs to assess its sensitivity to the choice of LLMs, as
shown in Table 1. Specifically, when using DeepSeek, our
method achieved a performance of 78.79%, which is com-
parable to the 78.44% achieved with GPT-3. This indicates
that the choice of LLM has only a minimal impact on the
overall performance of our approach. These results suggest
that our method is robust and not heavily dependent on a
specific LLM for generating descriptions, making it adapt-
able to a wide range of language models without significant
performance degradation. This flexibility further highlights
the generalizability and practicality of our proposed frame-
work.
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Figure 1. Schematic comparison of (a) traditional feature-based
distillation, (b) traditional relation-based distillation, and (c) our
proposed LLM-assisted distillation. While traditional methods
rely solely on data relationships for knowledge transfer, our ap-
proach integrates both data and LLM-generated knowledge, en-
hancing fine-grained learning.

4. Influence of the Number of Categories
In this experiment, we investigate how the number of cate-
gories affects the results. As shown in Figure 3, increasing
the number of categories to 250 on the Cub dataset (above
the actual 200 categories) leads to a marginal performance
improvement, but further increases result in slight perfor-
mance degradation. We speculate that, as the number of
fine-grained categories per class is limited, excessive cate-
gories lead to meaningless distinctions and semantic confu-
sion.

5. Influence of Text Length
Table 2 presents the impact of varying text lengths on the
performance of our model. The results show that when the
text length is relatively short, the model experiences a slight
performance drop; however, the decline remains minimal.

Table 2. Performance of different text lengths.

Text Lengths Classification Image Retrieval

Top-1 Top-5 R-1 R-5 mAP

10 77.15 94.41 66.54 86.78 43.09
20 77.81 95.32 67.63 88.11 44.07
30 77.63 95.12 67.29 87.44 44.00
40 77.91 95.15 67.69 88.37 44.11
50 78.22 95.29 68.14 88.40 44.51
60 78.80 95.50 67.97 88.49 44.44

70(Ours) 78.44 95.30 68.17 88.37 44.43

Table 3. Performance comparison of CLIP with different back-
bones on Cub.

teacher’s backbones Classification Retrieval

Top-1 Top-5 R-1 R-5 mAP

CLIP-L/14 79.22 95.62 72.06 90.25 49.27
CLIP-B/16 78.44 95.30 68.17 88.37 44.43
CLIP-B/32 74.94 94.06 60.79 84.57 34.21

Table 4. Performance of varying word removal ratio on Cub.

Removal Ratio Classification Image Retrieval

Top-1 Top-5 R-1 R-5 mAP

0%(Ours) 78.44 95.30 68.17 88.37 44.43
20% 77.84 95.17 65.08 87.12 39.23
40% 76.42 94.81 64.53 86.85 37.99
60% 76.04 94.51 61.58 84.88 32.97
80% 74.54 94.08 57.90 82.55 30.70

We hypothesize that even with shorter text, LLMs are capa-
ble of effectively capturing and describing fine-grained key
features, ensuring robust performance. On the other hand,
as the text length increases, much of the additional content
tends to be redundant or irrelevant, contributing little to fur-
ther improving the model’s performance. These findings
suggest that our approach is both efficient and resilient to
variations in text length.

6. Influence of Errors in CLIP and LLM
In this experiment, we investigate how errors in CLIP and
LLM affects the results. For CLIP, we try different vari-
ants of decreasing abilities with more errors (ViT-L/14, ViT-
B/16, ViT-B/32) in Table 3. For LLM, we simulate semantic
errors by randomly removing words from descriptions. As
shown in Table 4, the performance slightly decreases with
more word removal. These results demonstrate that errors
in CLIP and LLM lead to minor performance degradation.

7. Comparison to IBOT and SimCLR
In order to further verify the effectiveness of our proposed
method, we compare two popular self-supervised methods,



1000 3000 5000 5994
Number of images

50

60

70

80

90
To

p-
1 

(%
)

LEAD(Our)
MoCo

(a) CUB

1000 3000 5000 8144
Number of images

50

60

70

80

90

100

To
p-

1 
(%

)

LEAD(Our)
MoCo

(b) Car

1000 3000 5000 6667
Number of images

40

50

60

70

80

To
p-

1 
(%

)

LEAD(Our)
MoCo

(c) Aircraft

Figure 2. Performance curve for fine-grained image classification with varying sample sizes. Our method consistently outperforms MoCo
across all image quantities, demonstrating its robustness and effectiveness.
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Figure 3. Using varying numbers of categories and text lengths.

Table 5. Performance comparison to IBOT and SimCLR on Cub.

Method Classification Retrieval

Top-1 Top-5 R-1 R-5 mAP

SimCLR 37.28 66.17 16.43 36.24 4.78
IBOT 73.66 92.37 61.53 83.93 34.89
Ours 78.44 95.30 68.17 88.37 44.43

i.e. BOT and SimCLR. As shown in Table 5, our proposed
method still performs better.

8. More Visualization Results

T-SNE Visualization. Figure 4 presents the t-SNE [10] vi-
sualizations of feature representations generated by MoCo
and our proposed method on three fine-grained datasets:
CUB, Cars, and Aircraft. The visualizations clearly demon-
strate that our method achieves superior clustering per-
formance, with samples from the same category tightly
grouped and distinct boundaries formed between different
categories. In contrast, the feature representations produced
by MoCo exhibit significant overlap and poorly defined cat-
egory boundaries, with these shortcomings being particu-
larly pronounced on the CUB dataset. It is important to

note that MoCo is equivalent to our method without the in-
corporation of knowledge distillation. Through the clearly
improved clustering results, it is evident that the integration
of knowledge distillation and the adaptive module signifi-
cantly enhances the separability of features. This improve-
ment is attributed to the knowledge distillation approach,
which effectively leverages the semantic information from
the CLIP teacher model and the contextual textual knowl-
edge provided by large language models, thereby strength-
ening the discriminative capability of features across differ-
ent categories.The experimental results further validate the
effectiveness of entropy-based adaptive distillation. This
technique not only enhances the quality of feature represen-
tations but also significantly improves the model’s adapt-
ability and performance in fine-grained tasks.
Visualization of more classification results. Figure 5
demonstrates some representative classification examples.
In the first column, the teacher model correctly classifies
the sample with low information entropy. Here, the adap-
tive module assigns greater weight to the KD branch, allow-
ing the student model to effectively learn accurate knowl-
edge from the teacher model. In the second column, the
teacher model produces an incorrect prediction accompa-
nied by high information entropy. To mitigate the impact
of erroneous knowledge, the adaptive module dynamically
shifts focus toward the CL branch, enabling the student
model to make the correct classification despite the teacher
model’s failure. These examples demonstrate the adaptive
module’s ability to balance the contributions of the KD and
CL branches, optimizing knowledge transfer and improv-
ing classification performance in varied scenarios. In the
third section, we also present two challenging examples
where the distinguishing features are not obvious, causing
our model to struggle with handling them.

9. Descriptions Generated by LLM
Table 6 presents examples of fine-grained labels and their
corresponding textual descriptions generated by LLM. As



M
oC

o
L

E
A

D
(o

ur
)

(a) Cub (b) Car (c) Aircraft

Figure 4. t-SNE visualization of MoCo and our method on three datasets. Dots of the same color represent images sharing the same class
label.Our method demonstrates significantly better clustering performance, with samples of the same category closely grouped and clear
boundaries formed between different categories. In contrast, the feature representations of MoCo v2 exhibit substantial overlap and poorly
defined category boundaries.

can be observed from the table, the textual descriptions gen-
erated by the LLM provide detailed and nuanced descrip-
tions of the visual characteristics specific to each category.
These descriptions effectively capture fine-grained semantic
and visual features, enabling the pre-trained CLIP model to
better leverage its potential in representing fine-grained dis-
tinctions. By incorporating these detailed and context-rich
textual descriptions, the framework facilitates the transfer of
more comprehensive and structured knowledge to the stu-
dent model, ultimately improving its ability to understand
and represent fine-grained features. This approach high-
lights the significant role of LLM-generated descriptions in
bridging the semantic gap and enhancing the performance
of downstream fine-grained tasks.

10. Evaluation Protocols
Following the previous works [1, 8, 11], we evaluate the
effectiveness of the proposed method in two downstream
tasks: fine-grained image classification and fine-grained im-
age retrieval. In these two downstream tasks, each model
should be first trained in a self-supervised manner without
using any labeled data, and then used for further evaluation.

In the image classification evaluation, the parameters
of the model trained by the self-supervised representation
learning method are fixed and a linear classifier is attached
to it. The linear classifier is trained to perform classification
and its classification performance reflects the quality of the
self-learned representation. We utilize the Top-1 and Top-5
accuracy as the classification performance.

Image retrieval (also equivalent to the nearest neighbor
classification) aims to search for neighbors close to the
query image in the latent feature space without adjusting
any model parameters. We use Rank-1, Rank-5, and mean
Average Precision (mAP) as the performance metrics. For
ease of reference, we simplify Rank-1, Rank-5 as R-1 and
R-5.

11. Implementation Details
In the student branch, we use ResNet50 [5] pre-trained on
the ImageNet-1K dataset [3] as the default encoder back-
bone unless otherwise stated. The projection head consists
of two fully connected layers with ReLU activation and a
third linear layer with batch normalization [6]. For the con-
trastive training, we follow MoCo v2’s [2] training style,
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Figure 5. More examples of the prediction results and information entropy obtained by our method on the CUB dataset, and the probability
distribution outputted by the teacher model are also illustrated. Predictions in red denote incorrect classifications, while predictions in
green signify correct classifications.



Table 6. Descriptions of representative fine-grained categories generated by LLM using hand-crafted textual prompts. We limit the length
of descriptions to 70 due to the input length limitation of CLIP’s textual encoder. The descriptions provide rich semantic context for fine-
grained representation learning.

Prompt: Describe the appearance of {fine-grained category} {coarse category}, with a word limit of no more than 70 words.
Coarse

category
Fine-Grained

category Descriptions Generated by GPT-3

bird
Pelagic

Cormorant

The Pelagic Cormorant is a sleek seabird with a glossy black body and distinctive greenish-
black iridescence. It features a long, slender neck and a sharp, pointed bill. During the breeding
season, it displays striking white wing patches and a white throat patch. The eyes are bright
blue, enhancing its unique look. Often seen near coastal waters, this cormorant is adept at
diving for fish and is frequently spotted perched on rocky outcrops.

bird
Least

Flycatcher

The Least Flycatcher is a small, slender bird with a brownish-olive back and pale underparts. It
features a distinctively short, stubby bill and a faint eye ring. The wings are dark with two white
wing bars, and its tail is relatively short. Its overall coloration is subtle, making it blend well
into its surroundings. Often found in deciduous forests, this flycatcher is known for its quick,
sharp calls and agile foraging behavior.

bird White Pelican

The White Pelican is a large, graceful bird known for its striking all-white plumage and long
wings. It has a massive, elongated bill with a distinctive pouch, ideal for catching fish. The
head and neck are also white, with a slight yellowish tinge during breeding season. Its legs are
short and webbed, and it has a rounded body. Often seen gliding over lakes and wetlands, the
White Pelican is a majestic sight in flight.

car
Chevrolet

TrailBlazer SS
2009

The 2009 Chevrolet TrailBlazer SS features a bold, muscular design that emphasizes its sporty
character. Its aggressive front end showcases a prominent grille and sleek headlights, giving it a
commanding presence. The sculpted body includes pronounced wheel arches and smooth lines,
enhancing its athletic profile. At the rear, distinctive taillights and dual exhaust outlets highlight
its performance pedigree. Overall, the TrailBlazer SS combines the utility of an SUV with a
powerful, dynamic aesthetic.

car
Audi R8 Coupe

2012

The 2012 Audi R8 Coupe boasts an iconic, aerodynamic design with a low, wide stance. Its
front features a bold Singleframe grille and sleek, angular headlights that convey aggression.
The sculpted body showcases sharp lines and pronounced wheel arches, enhancing its sporty
look. At the rear, distinctive taillights and a prominent diffuser accentuate its performance
pedigree. Overall, the R8 combines luxury and cutting-edge design, embodying the essence of
a high-performance supercar.

car
Lamborghini

Aventador
Coupe 2012

The 2012 Lamborghini Aventador Coupe features a striking, aerodynamic design with sharp
angles and aggressive lines. Its low, wide stance is accentuated by prominent wheel arches and
a bold front fascia with an angular grille. The signature Y-shaped headlights and sleek rear
taillights enhance its modern aesthetic. With butterfly doors that open upward and a sculpted
body, the Aventador embodies a blend of luxury and high-performance, making it an iconic
supercar.

aircraft
Beechcraft

1900

The Beechcraft 1900 aircraft features a compact, twin-engine design with a rounded nose and
a high-mounted, slightly swept-back wing. Its fuselage is sleek and narrow, accommodating
a spacious cabin with large windows for passenger comfort. The two turboprop engines are
mounted on the wings, enhancing its distinctive profile. Often painted in various airline liver-
ies, the Beechcraft 1900 combines functionality and modern aesthetics, making it popular for
regional and commuter flights.

aircraft BAE 146-300

The BAE 146-300 aircraft features a sleek, wide-body fuselage with a rounded nose and low-
mounted wings. Its distinctive four turbofan engines are mounted high on the wings, enhanc-
ing its unique profile. The wings are slightly swept back and equipped with winglets for im-
proved aerodynamics. The spacious cabin includes large windows for passenger comfort. Often
adorned in vibrant airline liveries, the BAE 146-300 combines modern design with functional-
ity, making it ideal for regional and short-haul flights.

aircraft SR-20

The SR-20 features a sleek, low-wing design with a rounded nose and a spacious, modern
cockpit. Its elongated fuselage is complemented by large, oval windows that provide excellent
visibility. The aircraft is powered by a single engine mounted at the front, giving it a streamlined
profile. With a T-tail configuration and often finished in vibrant colors, the SR-20 combines ad-
vanced aerodynamics with a stylish appearance, making it a popular choice for general aviation.



and the momentum value and memory size are set to 0.999
and 65536 respectively. We set the batch size to 64 and use
the SGD optimizer with a learning rate of 0.03, a momen-
tum of 0.9, and a weight decay of 0.0001. During the train-
ing phase, the images were resized to 224×224 pixels, and
the training epoch is set to 100. During the testing phase,
images are first resized to 256×256 pixels and then center-
cropped to 224×224 pixels.

References
[1] Qi Bi, Wei Ji, Jingjun Yi, Haolan Zhan, and Gui-

Song Xia. Cross-level multi-instance distillation for self-
supervised fine-grained visual categorization. arXiv preprint
arXiv:2401.08860, 2024. 4

[2] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv preprint arXiv:2003.04297, 2020. 4

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 4

[4] Zhiyuan Fang, Jianfeng Wang, Lijuan Wang, Lei Zhang,
Yezhou Yang, and Zicheng Liu. Seed: Self-supervised
distillation for visual representation. arXiv preprint
arXiv:2101.04731, 2021. 1

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 4

[6] Sergey Ioffe. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. arXiv
preprint arXiv:1502.03167, 2015. 4

[7] Zhe Ma, Jianfeng Dong, Shouling Ji, Zhenguang Liu,
Xuhong Zhang, Zonghui Wang, Sifeng He, Feng Qian, Xi-
aobo Zhang, and Lei Yang. Let all be whitened: Multi-
teacher distillation for efficient visual retrieval. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, pages
4126–4135, 2024. 1

[8] Yangyang Shu, Anton Van den Hengel, and Lingqiao Liu.
Learning common rationale to improve self-supervised rep-
resentation for fine-grained visual recognition problems. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 11392–11401, 2023. 4

[9] Frederick Tung and Greg Mori. Similarity-preserving knowl-
edge distillation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 1365–1374,
2019. 1

[10] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9
(11), 2008. 3

[11] Zihu Wang, Lingqiao Liu, Scott Ricardo Figueroa Weston,
Samuel Tian, and Peng Li. On learning discriminative fea-
tures from synthesized data for self-supervised fine-grained
visual recognition. In European Conference on Computer
Vision, pages 101–117. Springer, 2025. 4


	Different Distillation Methods
	Influence of the Number of Images
	Influence of Using Different LLMs
	Influence of the Number of Categories
	Influence of Text Length
	Influence of Errors in CLIP and LLM
	Comparison to IBOT and SimCLR
	More Visualization Results
	Descriptions Generated by LLM
	Evaluation Protocols
	Implementation Details

