
NoiseController: Towards Consistent Multi-view Video Generation via
Noise Decomposition and Collaboration

–Supplementary Material–

Haotian Dong1,†, Xin Wang2,†, Di Lin1,†, Yipeng Wu1, Qin Chen1, Ruonan Liu3,�

Kairui Yang1, Ping Li2, and Qing Guo4

1Tianjin University 2The Hong Kong Polytechnic University
3Shanghai Jiao Tong University 4Nankai University

Contents

1. Theoretical Foundations for NoiseController 1

2. Calculation of Scene-level Mask 1

3. Additional Ablation Studies 1
3.1. Independent Results of U-NetB and U-NetF 1
3.2. Combinations of Scene-Level Noise Mask

and Multi-Frame Noise Collaboration . . . 1
3.3. The Setting of the Initial Noise . . . . . . . . 2
3.4. Weights of Shared and Residual Components

of Scene-Level Noises . . . . . . . . . . . 2

4. Migration of Consistent Noises 3

5. Extra Downstream Applications 3

6. Additional Visual Comparisons 5

List of Figures

1 We compute the scene-level background
and foreground masks based on the bound-
ing box. . . . . . . . . . . . . . . . . . . . 1

2 The visualization comparison of generated
video frame via joint denoising and in-
dependent denoising. (a) NoiseController
achieves high-quality generation perfor-
mance on both background and foreground
regions, surpassing independent denoising,
e.g., (b) only using U-NetF and (c) U-NetB. 1

† Haotian Dong, Xin Wang, and Di Lin are co-first authors.
� Ruonan Liu is the corresponding author.

3 (a) Detailed architecture of Mask-
Collaboration. The scene-level background
noises ϵBi and foreground noises ϵFi are
masked with scene-level masks MB

i and
MF

i for spatial decomposition. Then,
the masked noises NB

i and NF
i are fed

into multi-frame noise collaboration to
compute the 6-view noises ϵn+1 for the
(n + 1)th frame. (b) Detailed architecture
of Collaboration-Mask. We respect the
preceding K-frame information, leveraging
multi-frame noise collaboration to compute
the 6-view noises ϵn+1 for the (n + 1)th

frame. . . . . . . . . . . . . . . . . . . . . 2

4 Comparisons on the impact of the weights
of the shared and residual components of
scene-level noises. We report the perfor-
mances in terms of FVD and FID on the
validation set of nuScenes. . . . . . . . . . 3

5 The visual comparisons on replacing our
consistent foreground and background
noises with those generated by Magic-
Drive. NB and NF represent the masked
background and foreground noises, re-
spectively. In the second case, we replace
our foreground noise with MagicDrive’s
foreground noise, resulting in inferior
performance on generated foreground
objects (see yellow rectangles). In the third
case, we use our foreground noise and
MagicDrive’s background noise to achieve
the overall noise for video generation, lead-
ing to inferior performance on background
scenes (see red ellipses). . . . . . . . . . . 4



6 The visual comparisons on replacing Mag-
icdrive’s foreground and background noises
with our consistent noise respectively. NB

and NF represent the masked background
noise and masked foreground noise, respec-
tively. Integrating our consistent scene-
level background and foreground noises
into MagicDrive can significantly improve
its performance. . . . . . . . . . . . . . . 6

7 The visual comparisons on cross-view con-
sistency between MagicDrive and NoiseC-
ontroller. We highlight the compared re-
gions (see red rectangles) for better compar-
isons. Our NoiseController achieves better
cross-view consistency in generated video
frames. . . . . . . . . . . . . . . . . . . . 7

8 The visual comparisons on cross-frame
consistency between MagicDrive and
NoiseController. We visualize the 1st,
5th, 10th, and 13th video frames with
highlighted regions (see red rectangles) for
better comparison. Equipped with multi-
level noise decomposition and multi-frame
noise collaboration, our NoiseController
achieves better cross-frame consistency for
foreground objects in generated videos. . . 8

9 The visual comparisons on cross-frame
consistency between MagicDrive and
NoiseController. We visualize the 1st,
3rd, 10th, and 13th video frames with
highlighted regions (see red rectangles) for
better comparison. Our NoiseController
achieves better cross-frame consistency
for background scenes in generated videos
due to the usage of multi-level noise
decomposition and multi-frame noise
collaboration. . . . . . . . . . . . . . . . . 9

10 The visual comparisons of foreground and
background details between MagicDrive
and NoiseController. Decomposing the
initial noises into scene-level background
noises and foreground noises, our NoiseC-
ontroller can focus on different spatial dis-
tributions during joint denoising. It allows
us to generate better background scenes
and foreground objects along with detailed
structures. . . . . . . . . . . . . . . . . . . 10

List of Tables
1 We examine the effectiveness of multi-level

noise decomposition and multi-frame noise
collaboration. Results are reported regard-
ing FVD and FID on the validation set of
nuScenes. . . . . . . . . . . . . . . . . . . 2

2 We conduct experiments on different ini-
tial noise settings. We randomly sample
the noise for 6 views for a specific video
frame, where 6-view noises are same (see
SameNoise) or different (see Different-
Noise). Results are reported regarding FVD
and FID on the validation set of nuScenes. . 2

3 Application of using the generated data to
augment the downstream tasks. The perfor-
mances are evaluated on the nuScenes vali-
dation set. . . . . . . . . . . . . . . . . . . 3



1. Theoretical Foundations for NoiseController

Our multi-level noise decomposition does not violate the
principles of Diffusion Models (DMs). The original DMs
take whole-image Gaussian noise as inputs, which inher-
ently limits their controllability in local regions. Many stud-
ies like [4, 7, 10] facilitate precise control in local regions
by modifying the initial noise through masking, disrupting
the global Gaussian distribution of the initial noises. Specif-
ically, Mao et al. [4] mention that diffusion models can tol-
erate non-Gaussian noise. FreeInit [10] decomposes noise
into different-frequency components and modifies the high-
frequency noise. This approach also results in a change of
the initial noise distribution. To adapt the diffusion model
to non-Gaussian noise, existing works [5] [1] fine-tune the
decoder of DMs, achieving better generation performance
and enabling the precise control in local regions.

Notably, from a technical perspective, previous
works [11, 12] typically predict the mean and variance
of the noise, and then sample the noise for progressive
denoising. However, from the perspective of neural
network fitting, it is impossible to ensure that the estimated
noise perfectly aligns with the added Gaussian noise when
training the noise estimation model. Current works [1, 5]
directly predict the tth step noise by training the diffusion
model, allowing for direct supervision of the predicted
noise against the ground-truth added noise. This strategy
facilitates the model’s adaptation to non-Gaussian noise
through fine-tuning.

Guided by this principle, NoiseController performs
multi-level noise decomposition and multi-frame noise col-
laboration, to compute the consistent ground-truth noises
using scene-level 6-view masks, enabling separate con-
trolled generation of local background and foreground re-
gions. Finally, we enhance the consistency and quality of
multi-view video generation by fine-tuning the diffusion
model to adapt to this consistent initial noise.

2. Calculation of Scene-level Mask

We illustrate the calculation of the scene-level foreground
and background masks in Figure 1. The scene-level back-
ground mask MB is derived from the bounding box, where
the pixel within the box region is 0, otherwise is 1. The
foreground mask MF is the inverse of MB. We define the
calculation of scene-level foreground mask MF as:

MF = 1− MB (1)

3. Additional Ablation Studies

We provide additional ablation studies for NoiseController
to demonstrate the effectiveness of its core modules.

(c) Foreground Mask FM(b) Background Mask BM(a) Image

Figure 1. We compute the scene-level background and foreground
masks based on the bounding box.

NoiseController(a) FOnly U-Net(b) BOnly U-Net(c)

Figure 2. The visualization comparison of generated video frame
via joint denoising and independent denoising. (a) NoiseCon-
troller achieves high-quality generation performance on both back-
ground and foreground regions, surpassing independent denoising,
e.g., (b) only using U-NetF and (c) U-NetB.

3.1. Independent Results of U-NetB and U-NetF

We employ our NoiseController that incorporates joint de-
noising to achieve high-quality generation performance in
both background and foreground regions (see Figure 2(a)).
Independent denoising using U-NetF (see red ellipse in Fig-
ure 2(b)) or U-NetB (see yellow rectangle in Figure 2(c))
results in deficient performance in background or fore-
ground regions, respectively. We observe that independent
denoising using U-NetF achieves superior generation per-
formance for foreground objects but struggles to generate
high-quality background scenes, compared to the result of
U-NetB. This is because that joint denoising alternates be-
tween foreground and background, preventing low-quality
components from affecting each other.

3.2. Combinations of Scene-Level Noise Mask and
Multi-Frame Noise Collaboration

We conduct experiments on the effect of multi-level noise
decomposition and multi-frame noise collaboration orders.
The performances are reported in Table 1 in terms of FVD
and FID. As illustrated in Figure 3 (a), we leverage scene-
level 6-view noises ϵDi and corresponding scene-level 6-
view masks MD

i to compute the masked background noise
NB

i and masked foreground noise NF
i for the ith frame.

Then, we leverage the inter-view spatiotemporal collabo-
ration matrix S and intra-view impact collaboration matrix
I to compute the following scene-level 6-view noises, en-
suring spatiotemporal consistency of the initial 6-view N -
frame noises. Compared to the NoiseController that masks
the computed 6-view noises ϵDn with the scene-level 6-view
masks MD

n after multi-frame noise collaboration (as illus-
trated in Figure 3 (b), it degrades the performances into
FVD 170.3 and FID 26.01 (see the first row of Table 1).

Decomposing the initial noises into background and
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(a) Mask-Collaboration (b) Collaboration-Mask

Figure 3. (a) Detailed architecture of Mask-Collaboration. The scene-level background noises ϵBi and foreground noises ϵFi are masked
with scene-level masks MB

i and MF
i for spatial decomposition. Then, the masked noises NB

i and NF
i are fed into multi-frame noise

collaboration to compute the 6-view noises ϵn+1 for the (n+1)th frame. (b) Detailed architecture of Collaboration-Mask. We respect the
preceding K-frame information, leveraging multi-frame noise collaboration to compute the 6-view noises ϵn+1 for the (n+ 1)th frame.

Table 1. We examine the effectiveness of multi-level noise decom-
position and multi-frame noise collaboration. Results are reported
regarding FVD and FID on the validation set of nuScenes.

Method FVD ↓ FID ↓

Mask-Collaboration 170.3 26.01
Collaboration-Mask 122.9 14.65

foreground noises fails to capture the internal collaborations
between scene-level background and foreground noises, re-
sulting in poor consistency in noise level. The inconsis-
tent 6-view N -frame noises further exacerbate the incon-
sistencies during generation, which leads to unsatisfactory
consistency in the generated video frames. The coupled
background and foreground information naturally maintain
the tight connection, which provides the scene-level infor-
mation to enhance spatiotemporal consistency and realism
in generated videos. It should be noted that NoiseCon-
troller decomposes the 6-view N -frame initial noises into
scene-level background and foreground noises without spa-
tial decomposition before noise collaboration, ensuring the
multi-frame noise collaboration to model the internal col-
laborations between these noises. After the estimated 6-
view noises ϵ̃Dn+1 via multi-frame noise collaboration, we
respect the scene-level masks to decompose the background
and foreground spatially, which allows two parallel denois-
ing U-Nets to focus on the generation of different spatial
distributions.

3.3. The Setting of the Initial Noise
We conduct experiments on the setting of initial noise. The
performances are reported in Table 2 in terms of FVD and
FID. We provide unsuited noise prior for denoising net-
work, when we leverage the same noises across 6 views

within the same frame, leading to worse performance (see
the first row of Table 2). We then utilize 6-view N -frame
different noises for multi-view video generation. In this
scenario, our NoiseController degrades into the baseline
model, which fails to adequately constrain the initial noises,
resulting in inconsistent starting points for denoising and
the inferior generation performance (see the second row of
Table 2). Our NoiseController captures mutual cross-view
effects and historical cross-frame impacts through multi-
level noise decomposition and multi-frame noise collabo-
ration, enhancing the consistency of generated multi-view
videos (see the last row of Table 2).

3.4. Weights of Shared and Residual Components
of Scene-Level Noises

In this paper, each residual component of scene-level
noises follows a specific Gaussian distribution, i.e., the
residual components of scene-level noise ϵBR

m,n follows the
Gaussian distribution of N (0, 1

η2+1I) and ϵFR
m,n follows

N (0, 1
λ2+1I), where η and λ are two hyperparameters. We

conduct experiments on the effectiveness of shared compo-
nent weights WDS and residual components weight WDR

Table 2. We conduct experiments on different initial noise settings.
We randomly sample the noise for 6 views for a specific video
frame, where 6-view noises are same (see SameNoise) or differ-
ent (see DifferentNoise). Results are reported regarding FVD and
FID on the validation set of nuScenes.

Noise FVD ↓ FID ↓

SameNoise 234.8 23.54
DifferentNoise 177.3 20.92

NoiseController 122.9 14.65



Table 3. Application of using the generated data to augment the downstream tasks. The performances are evaluated on the nuScenes
validation set.

Data
Detection Segmentation

BEVDet [3] BEVDepth [6] StreamPETR [9] FIERY [2] Lift [8]
NDS ↑ mAP ↑ NDS ↑ mAP ↑ NDS ↑ mAP ↑ IoU ↑ IoU ↑

w/o aug. 35.00 28.30 43.55 33.04 53.70 43.20 35.80 33.03
w/ NoiseController 36.02 28.92 44.09 33.21 53.92 43.32 37.30 33.89
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Figure 4. Comparisons on the impact of the weights of the shared
and residual components of scene-level noises. We report the
performances in terms of FVD and FID on the validation set of
nuScenes.

of scene-level background and foreground noises. The
performances are reported in Figure 4, where abscissa is
WDS : WDR .

Too small shared weights, e.g., WDS : WDR = 0.2 :
0.8, NoiseController achieves the unsatisfactory perfor-
mances with FVD 152.2 and FID 16.44 because a small
proportion of shared components decreases the multi-frame
noise collaboration, resulting in unsatisfactory consistency
cross frames.

With larger shared weights, e.g., WDS : WDR = 0.3 :
0.7, NoiseController improves the performances to FVD
122.9 and FID 14.65. The larger shared component weights
help to collaborate cross-frame noises, which ensures the
computation of shared components of scene-level noises
fully utilizes the preceding K-frame information.

However, too large shared weights, e.g., WDS : WDR =
0.6 : 0.4, performances degrade significantly with FVD
160.4 and FID 18.21. This is because too large shared com-
ponent weights result in content homogenization, resulting
in a lack of diversity in generated video frames. Therefore,
we choose WDS : WDR = 0.3 : 0.7 as the default.

4. Migration of Consistent Noises
Our NoiseController provides spatiotemporally consistent
initial noises through multi-level noise decomposition and
multi-frame noise collaboration. We transfer the fore-
ground and background noises generated by MagicDrive
into NoiseController, respectively, to examine the effective-
ness of our designed consistent noise. As shown in Figure 5,
replacing our consistent noises with foreground and back-
ground noises generated by MagicDrive results in the loss

of consistency in the generated video frames. As shown
in Figure 6, replacing MagicDrive’s foreground and back-
ground noises with our consistent noises leads to the addi-
tion of consistency in the generated video frames.

5. Extra Downstream Applications

We interpolate the frames in each scene of the original
nuScenes dataset (2 Hz, 28,130 samples for training, and
6,019 samples for validation) to achieve a sampling fre-
quency of 12 Hz. In each scene, we segment the data
into video clips using a sliding window whose length is 16
frames, moving forward with a stride of one frame. It allows
us to generate 154,780 and 33,114 video clips for training
and validation sets, respectively.

We randomly perform video generation on 2% of the
videos based on the training set. Then, we select the images
according to the sample tokens from the original nuScenes
training set to achieve a large-scale dataset consisting of im-
ages generated by NoiseController. Given this large-scale
dataset, we randomly select 5,600 video frames comprising
6-view images to serve as additional diverse training data
for downstream perception tasks.

We choose detection and segmentation as the down-
stream perception tasks. Specifically, we choose
BEVDet [3], BEVDepth [6], and StreamPETR [9] as the
baseline downstream detection models, while FIERY [2]
and Lift [8] are served as the baseline segmentation models.
We retrain these methods on the mixed training set which
consists of the original training set and additional training
data generated by NoiseController, to evaluate the effective-
ness of generating data for augmenting the perception tasks.
The experimental setups including the training epochs and
learning rate of each method are consistent with those in the
original paper.

In Table 3, we report the evaluation performance with-
out augmentation (see the first row of Table 3), as well as
with augmentation using data generated by NoiseController
(see the second row) for downstream detection and segmen-
tation tasks. As a data augmentation strategy, these five
methods have achieved a significant improvement by re-
training on the mixed training set. This is because NoiseC-
ontroller fully utilizes multi-level noise decomposition and
multi-frame noise collaboration to enhance the consistency
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Figure 5. The visual comparisons on replacing our consistent foreground and background noises with those generated by MagicDrive. NB

and NF represent the masked background and foreground noises, respectively. In the second case, we replace our foreground noise with
MagicDrive’s foreground noise, resulting in inferior performance on generated foreground objects (see yellow rectangles). In the third
case, we use our foreground noise and MagicDrive’s background noise to achieve the overall noise for video generation, leading to inferior
performance on background scenes (see red ellipses).

in noise level, leading to spatiotemporal consistency in gen- erated videos. The additional diverse training data gener-



ated by our NoiseController helps downstream detection
and segmentation models to optimize network parameters
during the training process and enhance the robustness of
models.

6. Additional Visual Comparisons
In Figures 7, 8, 9, and 10, we provide more visualiza-
tion comparisons on the validation set of nuScenes. Our
inter-view spatiotemporal collaboration matrix S models the
noise collaborations between different views, helping to en-
hance the cross-view consistency in the generated videos.
As shown in Figure 7, NoiseController maintains better
cross-view consistency for foreground objects compared to
the MagicDrive. In multi-frame noise collaboration, we re-
spect the preceding 6-view K-frame noises to compute the
shared components of scene-level noises for the following
frames, helping to enhance the cross-frame consistency in
the generated video frames. Please note that NoiseCon-
troller can maintain considerable cross-frame consistency
for foreground objects (see Figure 8) as well as background
scenes (see Figure 9). We provide the generated videos for
better comparisons on cross-view and cross-frame consis-
tency. In Figure 10, we show the comparisons of the de-
tails of background scenes and foreground objects. The
spatial decomposition of scene-level background and fore-
ground noises ensures that two parallel denoising U-Nets of
NoiseController focus on the different spatial distributions,
enhancing the generation performance on background and
foreground details. Additionally, we include some video re-
sults in “video.zip”.
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Figure 6. The visual comparisons on replacing Magicdrive’s foreground and background noises with our consistent noise respectively.
NB and NF represent the masked background noise and masked foreground noise, respectively. Integrating our consistent scene-level
background and foreground noises into MagicDrive can significantly improve its performance.
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Figure 8. The visual comparisons on cross-frame consistency between MagicDrive and NoiseController. We visualize the 1st, 5th, 10th,
and 13th video frames with highlighted regions (see red rectangles) for better comparison. Equipped with multi-level noise decomposition
and multi-frame noise collaboration, our NoiseController achieves better cross-frame consistency for foreground objects in generated
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