Online Dense Point Tracking with Streaming Memory

Supplementary Material

1. Implementation Details

Network Details. We adopt the classical optical flow esti-
mation network RAFT [10] as our backbone. Besides, fol-
lowing the modification of DOT [5] to the architecture of
RAFT, we also use a stride 1 in the first convolutional layer
of the image encoder and predict the visibility mask by an
additional mask decoder. The channel number of different
features is set as follows: D of encoded feature from the
image encoder is 256, Dj, of memory key is 128, D, of
memory value is 256, and D, of sensory memory is 128.
In addition, the bilinear kernel b(-) used in our visibility-
guided splatting has the following formulation:

b(A) = max(0, 1 — |A,]) - max(0,1— [A,]), (1)

where A = (21, y1) + £{%, [(21,51)] — (26, 90).

Loss Function. The loss function of SPOT consists of the
11 loss [10] for the predicted flows and binary cross-entropy
loss for the visibility prediction. Specifically, we use expo-
nentially increasing weights for predictions from different
GRU iterations. Given ground-truth optical flow flgt_n and
visibility mask v9°,,, our loss function is defined as:

N
ZO-BNﬂ [)\Hflgt—n — il + BCE(Viﬁ—n&vVi—n)} )
i=1

where A is set to 1000 empirically.

Training Details. We employ FlashAttention-2 [3] for fast
attention computation within the memory reading module.
During training, we use Adam optimizer with one-cycle [9]
learning rate on eight NVIDIA H100 GPUs. The learning
rate is le-4. The batch size is 24 for the first training stage
(i.e., 500k steps on optical flow dataset Kubric-CVO [12])
and 8 for the second one (i.e., 100k steps on point tracking
dataset Kubric-MOVi-F [4]).

Evaluation Details. We set the iteration number N of flow
decoding to 16 by default, as 16 iterations already achieve
the peak accuracy on real-world videos from DAVIS [8]. In
contrast, we set it to 32 on Kinetics [2], RGB-Stacking [6],
and RoboTAP [11]. Because we find that more iterations
of GRU can improve the accuracy of these three datasets.
These may be due to the different motion characteristics
(e.g., faster motion of human actions and weak texture of
robotic scenes) of these three datasets.

2. More Quantitative Analysis

Online Setup under Original Window Size. We addition-
ally give a setup without modifying the window size of ex-
isting offline models: when processing frame ¢, we provide

Table 1. Point tracking results on DAVIS (First). i represents
evaluated in an online fashion under the original window size with
extremely slow speed.

Online AlT <45,,7 OA?T
TAPIR? 56.7 70.2 85.7

CoTracker2f  55.9 68.7 83.7
SpatialTrackert  57.3 70.6 85.0

DOT? 57.3 69.7 85.2
Online TAPIR  56.2 69.3 84.6
Ours 61.5 75.0 88.9

the model with all prior frames. This process is repeated
for each frame sequentially, ensuring predictions are based
solely on past frames. This gives an upper bound of per-
formance for reference though with extremely slow speed.
We use 1 to denote this setup. Due to the extremely slow
inference speed of this setup, we only provide the result on
DAVIS (First) in Tab. 1: SPOT still beats other online ver-
sions by a large margin, with a much faster inference speed.
It still supports our contributions of strong performance and
superior efficiency.

Further Discussion on Forward Splatting and Back-
ward Warping. The main idea of SPOT is breaking down
long-term tracking into two simpler steps, i.e., long-range
propagation with flow and similarity-based short-range re-
trieval. SPOT instantiates propagation with splatting and re-
trieval with attention. We can also first use attention to algin
F', to memory frames, then backward warp them to frame 1,
i.e., areversed pipeline of SPOT. Though there are many-to-
one mapping and empty regions in splatting, we tackle them
with visibility mask and inpainting. However, there are also
problems with backward warping, i.e., warping error fore-
ground for occluded region, warping out-of-frame empty
regions. These problems are caused by underlying physical
motion. Therefore, there is no preference for which long-
range propagation method to choose. The important point
is the framework of two-step breakdown. Here, we further
provide an additional ablation experiment: we warp the fea-
tures of memory frames to the first frame directly, without
the stage of attention for short-range retrieval. As shown
in Tab. 2, though the ablated model achieve similar results
as our SPOT on short videos, it fails to generalize to longer
videos (CVO Extended) due to error accumulation.
Computational Complexity. SPOT only maintains 3
frames memory, the computational complexity will not in-
crease after time step ¢ being larger than 3. In addition, we
provide curve of GPU memory and speed w.r.t video reso-



Table 2. Alation results on CVO dataset. We ablate the attention block of SPOT here.

Method CVO (Final) CVO (Extended)
EPE | (all/ vis / occ) EPE | (all/ vis / occ)
SPOT 1.17/0.67 / 3.49 6.42/3.86/9.98

Attention Ablation

1.

18/0.69/3.50

395.35/379.44 / 428.48
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Figure 1. GPU memory and inference FPS v.s. input resolution.

lution in Fig. 1. SPOT runs much faster than DOT across
varying resolutions up to 1024x1024, while consumes sim-
ilar memory. The main computational overhead still lies in
RAFT. So, we believe recent progress in efficient and high-
resolution optical flow estimation can greatly and immedi-
ately benefits SPOT due to the unified architecture design.
Compared to Recent Methods. Track-On [I] and
DELTA [7] are very recent works that focus on online sparse
tracking and offline dense tracking, respectively. However,
SPOT tackles online dense tracking. Here, we provide an
efficiency comparison with them under our setting. On
H100, SPOT tracks 512x512 videos (around 262k points)
at 12.4 FPS with 4.15GB GPU memory. But Track-On
can only tracks up to 21k points at 1.23 FPS with 77.2GB
GPU memory; DELTA runs at 0.19 FPS with 49.58GB GPU
memory. Considering the significant latency and memory
consumption, both are not suitable for online dense point
tracking we consider here.

Accuracy vs. Temporal Interval. We repurpose TAP-Vid
to evaluate performance across varying temporal intervals
explicitly. Specifically, we employ the DAVIS (First) split
here and evaluate the performance for each temporal in-
terval (up to 30 here) without averaging the results across
the temporal intervals. Fig. 2 shows that AJ will degrade
gradually as the temporal interval increases, while SPOT
generally outperforms Online TAPIR [11] on all tempo-
ral intervals. Besides, AJ of SPOT w/o memory degrades

temporal interval

Figure 2. AJ of our SPOT, SPOT w/o Memory, and Online TAPIR
across varying temporal intervals on DAVIS (First).
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Figure 3. Qualitative ablation of memory bank on challenging
real-world video.

rapidly, illustrating the important role of memory module.
Though length of our memory bank is only 3, SPOT prop-
agates information from first frame to memory frames di-
rectly, greatly alleviating the information degradation and
helping handling long videos.

3. More Qualitative Results

Qualitative Analysis of Memory Bank. We provide quali-
tative ablation of memory bank on video with large appear-
ance variations in Fig. 3. As shown in Fig. 3, removing the
memory bank leads to the failure of tracking due to appear-
ance changes. Our SPOT with memory bank can success-
fully track the points of cars and overcome the challenge of
appearance variations.

Qualitative Result on Long Occlusion. SPOT introduces
visibility mask during splatting (Eq. 7 of main paper). And
splatted feature of occluded region will be all zeros and no



Figure 4. Qualitative result on long occlusion.

effective information can be read out through attention. So
SPOT ‘degrades’ to pairwise method in such extreme case.
We provide a such case in Fig. 4, where right woman (red
color) is totally occluded by man for 10 frames (longer than
3 frames memory). Once the woman reappears, SPOT suc-
cessfully locates the woman and recovers from occlusions.
Qualitative Results on CVO. We provide more qualita-
tive comparison results with the previous state-of-the-art
method for dense tracking, DOT [5], on long-range opti-
cal flow benchmark CVO in Fig. 5. The areas where our
SPOT achieves substantial improvements are highlighted
with bounding boxes. Please zoom in for more details. DOT
typically fails to estimate the motion of small objects, oc-
cluded objects, and objects with weak textures. By contrast,
our SPOT successfully estimates the motion for these hard
cases.

Qualitative Results on Real-world Videos. We also pro-
vide more qualitative results with the previous state-of-the-
art method for online tracking, Online TAPIR [11], on real-
world videos from DAVIS in Fig. 6. Fig. 6 shows that
our SPOT has superior performance on real-world videos.
Please zoom in for more details.

Failure Cases. We provide some failure cases in Fig. 7.
Our SPOT fails to track the bike after extreme long occlu-
sion, i.e., more than 20 occluded frames in the first case.
Besides, SPOT cannot distinguish texture-less objects prop-
erly, especially there are four similar fast-moving ducks in
the second case. Finally, for fast motion shown in the third
and fourth cases, SPOT may lose the track of thin object or
even the whole object.
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Figure 5. More qualitative comparison on the CVO (Extended). Notable areas are marked by a bounding box. Please zoom in for details.
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Figure 6. More qualitative comparison on DAVIS. For each sequence, we show tracking results of Online TAPIR [11] and SPOT. Only
foreground points of the first frame are visualized, each point is displayed with a different color and overlayed with white stripes if occluded.
Please zoom in for details.



l'l,\ iy

| 0/
\

Figure 7. Failure cases on DAVIS. Please zoom in for details.
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