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We provide comprehensive supplementary materials to
support the details of the proposed PS-Mamba. Section 1
covers the architecture details, while Section 2 describes the
training schemes, inference processes, baselines, datasets,
and metrics. Section 3 presents a comparison between our
approach and additional recent methods, Section 4 presents
qualitative results to further verify the performance, and
Section 5 provides the details for the ablation study. Lastly,
Section 6 discusses limitations and future work.

We have uploaded the source code for reproducibility
and welcome your feedback.

1. Architecture Details

The proposed PS-Mamba is the first framework that re-
fines human pose sequences by integrating spatial-temporal
graph learning with state space modeling. The core com-
ponent is the ST-GSS block, which combines the ST-Graph
and ST-SSM, using our effective GST-Scanning.

ST-GSS Block. The Spatial-Temporal Graph State Space
(ST-GSS) block is the core component of PS-Mamba, de-
signed to capture spatial-temporal relationships in human
pose sequences. It integrates two key elements: the ST-
Graph network and the ST-SSM module. This block pro-
cesses human pose sequences by leveraging spatial relation-
ships between joints across time and refining motion co-
herence using state space modeling. The block contains a
residual skip connection that enhances the overall perfor-
mance by preserving and improving both spatial and tem-
poral features throughout the sequence.

GST-Scanning. We propose GST-Scanning (Graph-guided
Spatial-Temporal Scanning), specifically designed for re-
fining human pose sequences. It utilizes four scanning se-
quences to fully capture interactions between joints across
both spatial and temporal dimensions. Specifically, the four
scanning sequences are divided into two categories, each
with two forward and two backward scans, all guided by
the human skeleton graph.
• Bidirectional Spatial Scanning: This scans the joints

in the spatial space, capturing the relationships among
neighboring joints in the same frame.. Using a bidirec-
tional approach captures both forward and backward de-
pendencies among joints, enabling model to capture full
spatial structure of the pose

• Bidirectional Temporal Scanning: This scans the joints
across consecutive frames in the temporal domain. The
bidirectional scanning enables the model to capture both
past and future temporal dependencies between joints, en-
suring the model effectively captures the evolving dynam-
ics of joint motion over time.

By combining these four scanning sequences, GST-
Scanning effectively captures intricate spatial-temporal
graph relationships, improving the model’s capacity to re-
fine human pose sequences while ensuring enhanced coher-
ence across both spatial and temporal dimensions.

ST-Graph. The ST-Graph integrates both Graph Convo-
lutional Network (GCN) and Temporal Convolutional Net-
work (TCN) layers to model spatial and temporal depen-
dencies of human poses. It captures the spatial relationships
between joints across consecutive frames by modeling the
human pose as a graph where joints are nodes and spatial-
temporal edges encode their relationships. Spatial edges are
determined by the pose structure, while temporal edges link
joints across frames. A dynamic graph weight matrix adap-
tively adjusts the influence of neighboring joints, address-
ing challenges such as jitter and ambiguity in human pose
sequence refinement.

ST-SSM. The Spatial-Temporal State Space Model (ST-
SSM) refines the features from the ST-Graph network
through SSM blocks, applying layer normalization, depth-
wise convolutions, and selective 2D scanning (SS2D [13])
to capture spatial and temporal dependencies. This process
smooths the temporal evolution of joint positions while pre-
serving the spatial structure, enhancing both accuracy and
motion coherence in the pose sequence.

Encoder and Decoder. We employ one FC layer for both
encoding and decoding. The encoder and decoder are es-
sential for processing and refining human pose sequences.



The encoder extracts high-dimensional features from the
input sequence using pre-trained models. These features
are then processed through multiple ST-GSS blocks to cap-
ture spatial-temporal dependencies and refine motion coher-
ence. The decoder generates the refined human pose se-
quences from the processed features. This architecture en-
sures smooth pose refinement, addressing challenges such
as jitter and ambiguity in human pose refinement.

2. Training and Inference Details

2.1. Training Schemes

The proposed PS-Mamba was trained on an NVIDIA RTX
A6000 with a batch size of 128 for approximately 30
epochs. For the Human3.6M dataset and Denoising tasks, a
learning rate of 1 × 10−3 was used, while for AIST++ and
3DPW datasets, the learning rate was set to 1× 10−2, with
a learning rate decay factor of 1.0. The sliding window size
was set to 32. The loss weights for MPJPE, PA-MPJPE, and
Accel were 1.0, 4.0, and 0.1, respectively. Additionally, for
the SMPL representation, we incorporated extra SMPL pa-
rameter losses, including a 6D pose loss, with a weight of
1.0. The Adam optimizer was employed with the AMS-
Grad variant set to True. For the denoising task training,
we adopt the noise addition strategy from SynSP [20] and
GFPose [3], applying both Gaussian and uniform noise as
used in the baseline methods. Using the same noise con-
figuration as baseline methods ensures consistent training
and a fair comparison with existing denoising approaches.
For 2D representation on the Human3.6M [6] dataset, the
input 3D is initialized from Hourglass [15]. For 3D rep-
resentation on the Human3.6M [6] dataset, the input 3D is
initialized from FCN [14]. For SMPL representation on the
AIST++ [12, 17] dataset, the input SMPL parameters are
initialized from SPIN [11].

2.2. Inferences Schemes

For a fair comparison, we adopt the inference setting from
SmoothNet [23]. This ensures that the evaluation of PS-
Mamba is consistent with the established protocols and
comparable to existing methods in the field. Specifically,
we use the same input processing, post-processing steps,
and evaluation metrics as in SmoothNet to evaluate our
method’s performance For the denoising task, we follow
the evaluation protocol from SynSP [20] and GFPose [3].
This includes the same dataset splits, input noise levels,
and quantitative metrics used in these methods to facili-
tate an unbiased comparison of performance. The consis-
tency in the evaluation procedures allows us to reliably mea-
sure improvements and demonstrate the effectiveness of PS-
Mamba in various pose refinement tasks.

2.3. Baselines

SmoothNet [23] targeted temporal-only refinement, reduc-
ing jitter and enhancing accuracy.

SynSP [20] balanced smoothness and precision in both
single- and multi-view settings by aligning similar poses
across views for consistency.

MoManifold [4] used a neural distance field and a joint ac-
celeration manifold to model realistic motion dynamics.

One-Euro [2] reduces jitter in real time using an adaptive
cutoff frequency that adjusts to signal dynamics.

Gaussian1d [21] convolves the signal with a Gaussian
function, minimizing group delay.

Savitzky-Golay [16] applies a polynomial fit within a local
window, preserving features while reducing noise.

2.4. Datasets

Human3.6M [6] is a large-scale dataset for 3D human pose
estimation, containing approximately 3.6 million frames
from 11 subjects performing 15 actions, captured from 4
camera views. Recorded at 50 fps, it provides accurate 3D
joint annotations from a motion capture system and camera
parameters. Five subjects (S1, S5, S6, S7, S8) are used for
training, and 2 (S9, S11) for testing.

AIST++ [12, 17] is a lage multi-modal dataset based on
the AIST Dance Video DB, including 1,408 3D dance se-
quences (captured at 60 fps), along with 3D keypoint labels
and calibrated camera parameters spanning over 10 million
frames. It contains 30 subjects, 9 views, and 10 dance gen-
res with synchronized music, split into about 5.86M training
and about 2.85M testing frames.

3DPW [19] is a widely used 3D human pose dataset, in-
cluding 57,682 frames of accurate 3D human poses and
SMPL parameters at 30 fps, with 22,463 training frames
and 35,219 testing frames. It contains challenging outdoor
scenes, such as walking and climbing stairs, and is used to
evaluate image-based or video-based methods under occlu-
sion and complex real-world scenarios.

CMU-Mocap [18] includes a wide range of common activ-
ities, such as walking, swimming, and climbing, excluding
flying and rock climbing. A total of 2,241,016 frames are
used for training, while 755,857 are allocated for testing.

2.5. Metrics
We adopt the evaluation setup from SmoothNet [23] and
measure the performance of PS-Mamba using three stan-
dard metrics: MPJPE [6], PA-MPJPE [1, 8], and Accel [9].

MPJPE (Mean Per Joint Position Error) [6] measures the
average Euclidean distance between predicted and ground
truth joint positions, expressed in millimeters (mm). It is
commonly used to evaluate 3D pose estimation accuracy.



PA-MPJPE (Procrustes Aligned Mean Per Joint Position
Error) [1, 8] measures the average Euclidean distance be-
tween predicted and ground-truth joint positions after per-
forming a rigid alignment (scale, rotation, and translation),
using Procrustes Analysis (PA) [5]. It calculates the Eu-
clidean distance between aligned positions and is expressed
in millimeters (mm), widely used in 3D human pose esti-
mation evaluation.
Accel (Acceleration error) [9] is the average difference be-
tween estimated human pose along with ground-truth per-
joint acceleration, reported in mm/s².

3. Comparison with more SOTAs
To conduct a more comprehensive evaluation of PS-Mamba
against the recent methods, as shown in Table 1, we
present an additional comparison with DeciWatch [22] and
HANet [7] on the Human3.6M and 3DPW datasets. Both
DeciWatch [22] and HANet [7] leverage a sliding window
of size 100, which contributes to their relatively good ac-
celeration error performance. However, PS-Mamba consis-
tently achieves the best results, as evidenced by its lower
MPJPE and acceleration error. This superiority is attributed
to the unique combination of spatial-temporal graph model-
ing and state-space modeling, which enables PS-Mamba to
effectively handle and refine human pose sequences, even
with the smaller sliding window size of 32. The ability of
PS-Mamba to maintain high accuracy and smoothness in
complex scenarios highlights the strength of its advanced
modeling techniques.

Dataset Method MPJPE↓ Accel↓

Human3.6M

FCN [14] 54.6 19.2
FCN [14] + DeciWatch [22] 52.8 1.5
FCN [14] + HANet [7] 51.8 2.0
FCN [14] + SmoothNet [23] 52.7 1.0
FCN [14] + SynSP [20] 51.4 1.0
FCN [14] + PS-Mamba (Ours) 49.6 0.9

3DPW

PARE [10] 79.0 25.6
PARE [10] + DeciWatch [22] 77.2 6.9
PARE [10] + HANet [7] 77.1 6.8
PARE [10] + SmoothNet [23] 78.1 5.9
PARE [10] + SynSP [20] 76.2 6.2
PARE [10] + PS-Mamba (Ours) 75.4 5.8

Table 1. Comparison of our PS-Mamba with additional state-of-
the-art methods on the Human3.6M [6] and 3DPW [19] datasets.
Note that DeciWatch [22] and HANet [7] use a large window size
of 100, while our method utilizes a sliding window size of 32.

4. Qualitative Comparison and Analysis
Due to the page limitations of the main manuscript, we
present qualitative visual results in this section to explicitly
demonstrate PS-Mamba’s improvements in refining human
pose sequences, especially challenging scenarios.
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Figure 1. Failure cases. When faced with complex poses or
heavy occlusions, both our method and the compared method fail
to achieve the accurate human pose.

Visual Comparison. Figure 2 illustrates a comparison of
our method with FCN [14] on the Human3.6M [6] dataset.
As shown in Figure 5, Figure 6, and Figure 7, our PS-
Mamba outperforms SynSP [20] and SmoothNet [23] in 3D
mesh accuracy on AIST++ [12, 17]. PS-Mamba demon-
strates superior accuracy in resolving ambiguous poses. For
example, in the first row, FCN [14] misidentifies the left
and right feet, while PS-Mamba generates poses that are
closely aligned with the Ground Truth. Similarly, in the
fifth row, our model demonstrates robust performance even
in occlusions. These results verify PS-Mamba’s effective-
ness in handling ambiguity and maintaining robustness in
challenging scenarios.

Acceleration Error and MPJPE Analysis. Figures 3
and 4 further compare PS-Mamba with VIBE [9] on the
AIST++ [12, 17] dataset and FCN on the Human3.6M
dataset. PS-Mamba achieves consistently lower accelera-
tion error and MPJPE, demonstrating its capability to pro-
duce smoother motion trajectories and more accurate poses.
These visualizations emphasize its ability to enhance mo-
tion smoothness while maintaining high precision, espe-
cially under noisy or complex input pose sequences.

Jitter Analysis. To analyze the impact of jitters and better
highlight the improvements, we provide comparison videos
visualizing the refined 3D pose results on the AIST++
dataset. These videos display the pose skeleton sequences
along with corresponding acceleration errors and MPJPE.
For single-frame methods, we use FCN [14], while video-
based methods employ VIBE [9]. The visualizations reveal
that jitters are often unbalanced, with most frames exhibit-
ing minor jitters, while long-term jitters lead to substantial
errors. PS-Mamba reduces both short- and long-term mo-
tion jitters, leading to notable improvements in smoothness.
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Figure 2. Qualitative comparison on the Human3.6M [6] Dataset.

These comparisons and analyses highlight PS-Mamba’s
effectiveness in pose refinement, demonstrating its robust-
ness and accuracy across various datasets and scenarios.

5. Ablation Details
w/o ST-GSS: This excludes the Spatio-Temporal Graph-
guided State Space (ST-GSS) block, which integrates spa-
tial and temporal information for effective pose refinement.
w/o ST-SSM: This removes the Spatio-Temporal State-
Space Module (ST-SSM), which is responsible for model-
ing temporal dynamics in pose sequences.
w/o ST-Graph: This ablation eliminates the Spatio-
Temporal Graph, which models both spatial relationships
among joints, enhancing the understanding of dynamic hu-
man pose sequence.
w/o Weight W : This configuration excludes the graph
weight matrix W , which assigns learned importance to con-
nections between nodes in the spatio-temporal graph.
w/o Temporal: This omits the temporal strategy, which
models dependencies for motion temporal consistency.
w/o Residual: This removes the residual connections,
which bypasses layers and adds input directly to the output.
w/o MPJPE Loss: This ablation excludes the Mean Per
Joint Position Error (MPJPE) loss, a key supervision loss
for accurate 3D pose estimation.

w/o PA-MPJPE Loss: This removes the Procrustes-
Aligned MPJPE (PA-MPJPE) loss, calculated from pose
alignment after Procrustes-Aligned transformation.
w/o Accel Loss: This configuration omits the acceleration
loss, designed to ensure smooth temporal transitions and
minimize jitter in motion dynamics.

6. Limitations and Future Work
While PS-Mamba demonstrates significant improvements
in pose refinement, it has limitations in handling highly
complex or out-of-distribution motion sequences. As shown
in Figure 1, our method faces challenges in handling com-
plex poses and heavy occlusion, which can impact the ac-
curacy of pose refinement in such scenarios. The model’s
performance is heavily dependent on the specific training
data, which may limit its ability to generalize to diverse or
extreme motion patterns not represented in the dataset. To
address this, future work could focus on training a more
generalized model using larger and more diverse motion
datasets, enabling PS-Mamba to adapt to a wider range of
human poses and dynamic movements. This would enhance
the model’s robustness and applicability in real-world sce-
narios with varied human motion types.



Figure 3. Comparison of Acceleration Error and MPJPE on the AIST++ [12, 17] Dataset. This figure displays sampled visualizations
of acceleration error and MPJPE across multiple frames on the AIST++ [12, 17]. Our PS-Mamba method consistently outperforms
VIBE [9], achieving the lowest acceleration error and MPJPE. These results highlight PS-Mamba’s ability to generate smoother motion
trajectories and more accurate poses, demonstrating its robustness in enhancing motion smoothness and maintaining precision under
challenging conditions. This demonstrates PS-Mamba’s robustness as an effective solution for human pose sequence refinement.

Figure 4. Comparison of Acceleration Error and MPJPE on the Human3.6M [6] Dataset. This figure presents sampled visualiza-
tions of acceleration error and MPJPE across multiple frames on the Human3.6M [6]. Our PS-Mamba method consistently outperforms
FCN [14], achieving the lowest acceleration error and MPJPE. This demonstrates PS-Mamba’s capability to produce smoother motion
trajectories and more precise poses. The results highlight its robustness in addressing motion smoothness and maintaining accuracy under
challenging scenarios, establishing it as a reliable solution for human pose sequence refinement task.
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Figure 5. Qualitative comparisons on AIST++ [12, 17] Dataset. We compare our method with SynSP [20] and SmoothNet [23]. Our
approach refines 3D meshes more accurately, particularly in ambiguous cases, demonstrating our PS-Mamba’s effectiveness in handling
uncertainty and ensuring robustness in challenging scenarios.
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Figure 6. Qualitative comparisons on AIST++ [12, 17] Dataset. We compare our method with SynSP [20] and SmoothNet [23]. Our
approach refines 3D meshes more accurately, particularly in ambiguous cases, demonstrating our PS-Mamba’s effectiveness in handling
uncertainty and ensuring robustness in challenging scenarios.
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Figure 7. Qualitative comparisons on AIST++ [12, 17] Dataset. We compare our method with SynSP [20] and SmoothNet [23]. Our
approach refines 3D meshes more accurately, particularly in ambiguous cases, demonstrating our PS-Mamba’s effectiveness in handling
uncertainty and ensuring robustness in challenging scenarios.
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