A. Related Work

Existing Image Editing Methods Recent advancements in fashion image editing [5, 27, 42, 54] have enabled transfor-
mative applications such as virtual try-on [8—10, 49], dynamic garment replacement [19, 52]. Diffusion-based approaches,
exemplified by VITON-HD [7] (trained on 11,647 front-facing static poses), demonstrate high-fidelity garment synthesis but
remain limited to controlled environments with simplified poses, hindering deployment in real-world scenarios. Predominant
frameworks [1, 14, 25, 29] adopt a two-stage paradigm: anatomical mask generation followed by diffusion-driven [38] edit-
ing. However, mask generation strategies—whether coarse human parsers like SCHP [26] or garment-specific segmenters
such as TexFit [43] (encoders and decoders trained with the fashion-specific dataset DeepFashion)—struggle to reconcile
pixel-level anatomical accuracy with open-vocabulary editing flexibility.

Coarse-grained human masks, exemplified by IDM-VTON [8] (DensePose [4]-driven torso segmentation) and OOTDiffu-
sion [49] (SCHP-based [26] full-body parsing), restrict edits to predefined zones (e.g., upper torso) through rigid anatomical
priors, preventing dynamic length customization (e.g., waist-to-hip transformations). Recent methods like CatVTON [9] and
Cat2VTON [10] expand editable regions via global attention mechanisms but retain lower-body constraints from ankle-length
dress training data in VITON-HD [7]. Conversely, Fine-grained clothes masks (DPDEdit [44] with Grounded-SAM [24] ar-
chitecture, FICE [33] via CLIP-guided grounding) achieve pixel-aligned boundaries but rigidly adhere to dataset-specific
categories, making open-vocabulary style changes (e.g., “dress—pants”) infeasible. Even state-of-the-art approaches like
Leffa [56], which introduces flow-guided attention for lower-body edits, cannot modify garment lengths due to fixed mask
topologies. General-purpose editors [12, 22, 28] (e.g., Instructpix2pix [2], Null-text [31]) suffer from color bleeding and
detail loss (e.g., distorted hands) due to unconstrained attention maps. Emerging solutions like PromptDresser [23] explore
adjustable masks for wrinkle editing but lack anatomical length control, underscoring a persistent gap: no existing method
enables dynamic, anatomy-aware masking for open-world fashion editing.

Existing Detection/Segmentation Methods The quest for anatomically precise open-world editing reveals critical flaws
in existing methods. Open-vocabulary detectors like T-Rex2 [20] (noun-centric) struggle to localize rare regions (e.g., chest),
while DINOv1.6 Pro [36] misclassifies ambiguous areas (e.g., shorts —waist in twisted poses), and YOLO-World [6] er-
roneously edits non-target regions (e.g., jeans). Segmentation tools like SAM [24] suffer uncontrolled over-segmentation
via pixel-similarity expansion (e.g., facial edits during torso adjustments), distorting identity. Human parsers (20-class of
SCHP [26], DeepFashions [47]-trained garment constraints of TexFit [43]) lack flexibility, omitting regions like waist or
under-segmenting anatomy.

To achieve cross-modal alignment [3, 18, 51, 53], diffusion-based [38] approaches (DiffSeg [40]) generate noisy, anatomy-
agnostic edges (e.g., distorted hands) via coarse pixel classification, prioritizing texture over structure. Foreground-
background segmenters (DIS [35]/U2-Net [34]) misclassify subtle boundaries (hip-length—background), retaining only mis-
aligned clothing edges. Early attempts to extract anatomy-aware masks (e.g., U?2-Net [34]/DIS [35] for belly-length regions)
collapsed under foreground-background dichotomies, while DiffSeg’s text-aligned masks via inversion introduced unsta-
ble attention noise. Subsequent open-vocabulary detectors (GLEE [45]/T-Rex2 [20]), trained on noun-centric tags, failed
catastrophically on rare anatomical prompts ((e.g., waist/belly) and articulated poses due to unconstrained region proposals.
Human parsers (M2FP [50]/ATIParsing [55]) further highlighted field-wide rigidity, omitting critical regions (e.g., chest/belly).
Collectively, these efforts expose a persistent gap: no method achieves user-defined anatomical segmentation with pose ro-
bustness and in-the-wild generalization, demanding dynamic mask generation that fuses diffusion’s open-vocabulary capacity
with biomechanical priors.

B. DeepSeek Anatomy Parser

Category ‘ Included Tokens Coverage Principle
Star Tokens Neck, Shoulder, Elbow, Wrist, Hip, Knee, Ankle Skeletal joints for pose calibration
Fleshy Tokens | Forehead, Chest, Waist, Belly, Arms, Hip, Hand, Thigh, etc ~ Soft-tissue regions for volume editing

Table 1. Star tokens (skeletal joints) and fleshy tokens (volumetric anatomy) classification rules.

The Pose-Star framework employs DeepSeek-V3-Base [11], which is based on the MoE architecture, as the anatomical
instruction parser. This module interprets user-provided semantic commands (e.g., “belly-length blouse”) into structured



Garment Start Point End Point Coverage Zone

Blouse/Shirt Neck/User-defined User-defined Upper body (arms included)
Dress Neck/User-defined User-defined Full torso + legs
Pants/Skirt Waist User-defined Lower body

Table 2. Partial Instruction Mapping Protocol. Length Anchor: Explicit endpoint (e.g., belly in "belly-length”), Implicit Start: Auto-
derived from garment type.

Example: "belly-length blouse"
«  Start: Neck

« End:Belly

+  Output:

{
"star_tokens": ["Neck", "Shoulder", "Elbow", "Wrist"],
"fleshy_tokens": ["Chest", "Belly", "Arms", "Waist"],
"coverage_zone": "Upper body (neck—=>belly)"

}

Figure 10. Instruction mapping protocol example and DeepSeek target output in .json form.

body representations that define garment coverage zones. As shown in Tab. 2, the parser first identifies explicit length anchors
(e.g., "belly”) and implicit coverage ranges derived from garment semantics: blouses/shirts default to neck-to-hip coverage
including arms; dresses extend from neck to user-specified endpoints; pants/skirts initiate from waist landmarks. As shown in
Tab. 1, key to this process is the decomposition into two complementary anatomical token sets: Star Tokens encode skeletal
joints (Neck, Shoulder, Elbow, Wrist, Hip, Knee, Ankle) for pose calibration. Fleshy Region Tokens represent volumetric
anatomy (Chest, Waist, Belly, Arms, Thighs, Shanks, Torso) for style editing. A example of an anatomy-aware instruction
parsing and output results is shown in Fig. 10.

C. Attention Mechanisms in U-Net Architecture
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Figure 11. Background and Preliminaries. Diffusion-based token initialization.

To obtain the attention maps from the diffusion process of real images for inference in Pose-Star, we need to perform
diffusion (i.e., inversion-reconstruction) on these real images. Specifically, we invert (add noise to) the real image into the
initial latent space using DDIM [41] and then reconstruct (denoise) it back to the real image. This work primarily focuses
on the reconstruction process, with the goal of acquiring attention maps that capture the text token-image mapping during
this reconstruction. Additionally, due to the approximation inherent in diffusion models—where the U-Net cannot perfectly
learn the theoretical reverse conditional distribution g (z:—1 | 2, 29) and instead provides an approximate py (z¢—1 | 2¢)—the



inversion-reconstruction process lacks perfect symmetry, leading to errors where the reconstruction struggles to fully restore
the original image. To address this, we consider introducing null-text optimization [31]. Its core idea is to align the recon-
struction process with the inversion process by optimizing the MSE loss between the latent vector z; from the reconstruction
process and the corresponding latent vector z; from the inversion process at the same diffusion timestep:

qu)in llzt—1 — zt—1 (Z, O¢, C)II§ . Z1 =21 (2,0, 0). (6)

Here, () denotes the null text embedding, whose value is adjusted during optimization to minimize the loss. C represents the
text condition input, corresponding to target tokens (Star Tokens/Fleshy Tokens/Clothes Tokens), and z;_1 (-) signifies the
latent vector update for a single diffusion step. Through this process, we obtain the latent diffusion trajectory of the real input
image, from which we then extract the attention maps corresponding to the target tokens.

The U-Net structure used for noise prediction at each diffusion step is illustrated in Fig. 11(1), with our focus on its
attention layer. This layer comprises a downsampling (down) block, a middle (mid) connection block, and an upsampling
(up) block. Each block contains cross-attention and self-attention maps at different spatial resolutions: the down and up
blocks include resolutions of 256, 1024, and 4096, while the mid block has a resolution of 64. Higher resolutions typically
store higher-dimensional feature information. Crucially, as demonstrated in Prompt-to-Prompt [15] and shown in Figure
Fig. 11(2), the cross-attention layer primarily maps the text condition C' to a set of visual attention maps M, where each
map in M corresponds to a specific text token (e.g., 'neck’). This finding is essential to our method. Specifically, the deep
spatial features of the noisy image Z; are projected into the query matrix (), while the text embeddings (including: Star
Tokens/Fleshy Tokens/Clothes Tokens) are projected into the key matrix K and value matrix V. Learned linear projections
then yield the visual attention map corresponding to each token within the text condition C":

M = Softmax <Q2T> . 7

Through this method, the text condition C' is mapped to the output image z(, ensuring it aligns with the given conditional
prompt. We observe that the intermediate attention map set M serves as a visual identifier for the spatial extent of each
token, exhibiting a one-to-one correspondence with every text token. In essence, M functions similarly to a detection result
capturing the regions associated with all text tokens. By extracting the corresponding attention map from M, we initialize
the Maps for Star Tokens, Fleshy Tokens, and Clothes Tokens.

D. Post-Processing of Edge-Aware Selector.

To convert the refined edge map F into a valid segmentation mask, we perform a series of post-processing operations includ-
ing Edge Discontinuity Optimization, Edge-to-Mask Conversion, and Mask Edge Smoothing.

Edge Discontinuity Optimization We enforce spatial continuity in E to establish well-defined boundaries. Although the
initial Canny edges E suffer from fragmentation and missing segments due to illumination variations and interfering ob-
jects, we preserve relevant edges from R while addressing discontinuities. Specifically, we bridge discontinuous endpoints
through direct linear interpolation, as empirical evaluations indicate this approach introduces boundary deviations within 5%
of the total target area - an acceptable tolerance for practical applications. This optimization process ultimately yields a
topologically continuous edge representation suitable for mask generation.

Edge-to-Mask Conversion To generate a binary mask M from a closed curve represented in E (where 1 indicates edge
pixels and 0 indicates non-edge pixels), we propose an efficient boundary propagation algorithm that fills the interior region
while preserving the curve topology. First, initialize M by copying E such that edge pixels retain value 1 and non-edge
pixels are set to 0. Next, identify external regions by propagating from image boundaries: Enqueue all boundary-adjacent
pixels (i,7) where Mi, j = 0 (non-edge), temporarily marking them as external (value 2). Perform breadth-first search
using 4-connectivity (up/down/left/right neighbors), iteratively marking connected non-edge pixels as external (2). Upon
queue exhaustion, finalize M by assigning 0 to external pixels (value 2), 1 to all remaining non-edge pixels (interior), and
preserving original edge pixels (1). This approach robustly distinguishes interior/exterior regions in O(H W) time while
handling complex curve topologies through boundary-connected propagation, ensuring closed curves yield watertight masks.



Mask Edge Smoothing To address potential artifacts such as dark seams along mask boundaries that may arise from exces-
sively precise segmentation during editing, we implement a Mask Edge Smoothing procedure to enhance coherence between
edited and unedited regions. This process incorporates two complementary operations: First, we apply morphological di-
lation using a small circular kernel (radius=2 pixels) to slightly expand the mask boundary, ensuring sufficient coverage of
transitional edge areas. Second, we employ Gaussian smoothing (o=1.5) followed by curvature-constrained B-spline fitting
to maintain geometric continuity while eliminating irregular jagged artifacts along the contour. These operations collectively
preserve topological integrity while generating perceptually natural transitions, ultimately producing the optimized mask M
that robustly supports seamless content generation in practical editing scenarios.

E. Implementation

We systematically evaluate Pose-Star against state-of-the-art fashion-specific and general-purpose image editors: 1) Fashion-
Specific Editors: IDM-VTON [8] and CatVTON [9] for virtual try-on based on coarse-grained human masks, Leffa [56] for
full-body garment replacement using fixed anatomical priors, and TexFit [43] for text-driven editing with fine-grained clothes
masks. 2) General-Purpose Editors: text-guided diffusion editors Null-text [31] and InstructPix2Pix [2] without masks,
PowerPaint [57] + TexFit [43]/OOTDiffusion [49] for inpainting with clothes/human masks. To validate the effectiveness
of Pose-Star’s plug-in to the existing editor, our framework is configured for virtual try-on: IDM-VTON [8]+Pose-Star,
text-driven editing: PowerPaint [57]+Pose-Star. Pose-Star generates fine-grained human masks. All experiments utilize the
stable-diffusion-v1-4 model ' and are conducted on NVIDIA GeForce RTX 4090 GPUs with 24GB VRAM.

Figure 12. Representative Samples from the Challenging Real-World Evaluation Dataset.

As our approach is training-free, it eliminates the need for collecting large-scale, labor-intensive training datasets. To eval-
uate its practical utility in real-world, challenging scenarios, we curated 16,800 captured data samples from authentic online
platforms and applications (Facebook, Xiaohongshu, YouTube frames). This dataset (as shown in Fig. 12) was meticulously
selected to include challenging cases across multiple dimensions: hinged poses, dynamic snapshots, wide-angle overhead
shots, layer occlusions, and diverse body types/ages. Additionally, our test suite incorporates 5,136 hinged pose samples
filtered from DeepFashion-MultiModal. We will publicly release this challenging benchmark to better assess the limits of
current model capabilities and enable targeted optimization.

F. Robustness

This section addresses Q3 by analyzing the performance of Pose-Star under varying hyperparameters. We focus on three
critical parameters: threshold 8 € (0, 1) for thresholded mask averaging (Sec.2.2), where higher 8 enforces stricter attention
filtering; threshold « € (0, 1) for cross-self attention merge (Sec.2.3), with larger « tightening boundary alignment; and
selection range p € [0, 1] for the edge-aware selector, where [ denotes the shortest distance from point R, (m, n) to boundary
of Ry, and smaller i imposes stricter edge constraints. Our suggested setting range is: 8 € (0.2,0.6), « € (0.3,0.7), and
u € (0,0.21), as shown in Fig. 13.

The analysis demonstrates that parameters within our recommended ranges effectively balance noise suppression and
precision. Threshold /3 provides first-stage noise filtering during region aggregation, while stricter thresholds a enhance

"https://huggingface.co/CompVis/stable-diffusion-v1-4



Belly-length off
the shoulder
green sweater

Input
Belly-length
purple short-
sleeve shirt
Input 0 0.2
Belly-length pink
long-sleeve
leather jacket
Input

Figure 13. Hyperparametric Evaluation.

second-stage refinement, retaining only anatomically coherent regions. For edge optimization, tighter y+ values—enabled by
the localization and fusion module’s inherent precision—yield sharper boundaries aligned with anatomical contours. Collec-
tively, Pose-Star exhibits stable performance across these ranges, demonstrating robustness against parameter variations in
open-world editing scenarios.

We further evaluate the impact of two key parameters: the radius r for filtering attention noise around keypoints and
the sliding window size for merging multi-stage token attention maps. For star-region constraints, r is set to the minimum,
maximum, and average. The sliding window size is evaluated across four configurations: 1 x 1,2 x 2,3 x 3,4 x 4.
Performance is measured using mean Intersection over Union (IoU), with quantitative results summarized in Tab. 3.

Parameter Types Radius r Window Size
Settings minr aver maxr 1x1 2x2 3x3 4x4
Average IoU [37] 0.69 0.73 0.67 0.51 0.67 0.73 0.69

Table 3. Parametric evaluation of Radius » and Window Size.

Based on the evaluation results, we observe that extremely small or large radius r values lead to either loss of valid regions
or excessive noise inclusion. Consequently, setting 7 to the average distance achieves an optimal trade-off in stability. For
sliding window size, results align with findings in Sec.2.2: multi-stage attention map fusion (3 x 3) outperforms single-
stage configurations (1 x 1, 2 x 2) by better balancing effective region coverage, while oversized windows (4 x 4) induce
performance degradation due to over-coarsened fusion.

Additionally, to evaluate our method’s dependency on the pre-trained OpenPose model, we assess samples containing
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Figure 14. Pose-Star Robustness Evaluation on OpenPose Partial Keypoints Errors.

OpenPose keypoint detection errors. As illustrated in Fig. 14, OpenPose frequently exhibits local keypoint misalignment
or loss when the human body is heavily occluded by clothing (e.g., skirts) or in the presence of similarly colored adjacent
regions (e.g., black hats and trousers). Nevertheless, Pose-Star reliably generates anatomically consistent masks despite
keypoint inaccuracies. This robustness stems from OpenPose keypoints solely filtering attention pixels rather than directly
generating attentions (Sec.2.1), thus avoiding fundamental localization interference. Furthermore, clothing tokens mitigate
the impact of erroneous keypoints, while calibration through aggregation and refinement modules ensures stable performance.
Consequently, Pose-Star achieves resilience by synergizing existing components rather than relying on any single module.
The framework’s modular design also supports alternative pose estimators, which we will explore in future work.

G. User Study Protocol

To comprehensively evaluate the performance of our proposed image editing method, we conducted a user study involving
200 participants. The participant pool was recruited to represent diverse perspectives and expertise levels relevant to image
manipulation tasks, comprising 60 professional graphic designers (30%), 70 engineers with computer vision/ML experience
(35%), and 70 general users without technical backgrounds (35%). This stratified sampling ensured balanced assessment
across usability and technical robustness dimensions. Participants were presented with a randomized sequence of original
and edited image pairs across varied scenarios and asked to evaluate results using a structured survey titled Image Editing
Method User Evaluation Survey (as shown in Fig. 15).

The survey employed a 0-5 rating scale (O=Worst, 5=Best) across three critical dimensions: User-defined Region Flexi-
bility assessed whether edits were confined strictly to user-specified areas (e.g., “hip-length—knee-length” transformations),
with ratings ranging from 5 for perfect localization to 0 for complete failure; Pose Robustness measured the naturalness of
edits under challenging poses (e.g., extreme stances), where 5 indicated flawless limb/joint preservation and 0 denoted severe
disconnections; In-the-Wild Generalizability evaluated performance in real-world conditions (e.g., crowds, occlusions, night
scenes), with 5 representing seamless integration in cluttered backgrounds and 0 indicating catastrophic background/identity
corruption. Display hardware and lighting conditions were standardized across all testing sessions to ensure consistent visual
assessment.

H. Evaluation on Wild Images

Qualitative As illustrated in Fig. 16, we present additional evaluations across diverse scenarios: varying body types, multi-
task editing, specific age groups, regional occlusions, wide-angle captures, and hinged poses. Existing methods, constrained
by rigid masks, can only edit upper-body regions while failing to modify lower-body areas flexibly. Our approach not only
enables precise editing of user-specified regions but also supports concurrent multi-task edits (e.g., simultaneous upper and
lower garment replacement). It faithfully preserves original body proportions across diverse physiques. In occlusion scenar-
ios where non-editable foreground objects overlay target regions, our method retains foreground elements while plausibly
editing underlying targets. Under extreme conditions—including acute hinged poses and wide-angle overhead shots—it ro-
bustly accomplishes virtual try-on tasks. These qualitative results demonstrate the robust and powerful editing capabilities of
our method across diverse challenging scenarios.

Quantitative To further quantify the performance of our method, we employ ImageReward [48] as the evaluation met-
ric. Editing results generated by different models on our collected test dataset are assessed, with mean ImageReward scores
reported. As shown in Tab. 4, Pose-Star achieves superior human feedback ratings compared to fixed-mask baselines, at-
tributable to its anatomy-aware masks that faithfully adhere to user-specific editing instructions.
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Figure 15. Participant Evaluation Interface. Participants rate edited images across three dimensions: User-defined Region Flexibility,
Pose Robustness, In-the-Wild Generalizability. Scores range 0-5 (5=Best).

Methods | TexFit [43] Leffa[56] CatVTON[9] IDM-VTON [8] Ours
ImageReward [48] |  1.17 1.35 1.19 1.16 161

Table 4. Quantitative evaluation of human feedback.

I. Discussion and Limitations

Pose-Star exhibits limitations on specific samples: when editing transparent occlusions (as shown in Fig. 17), such as cases
where a human arm is partially obscured by glass and the occluded area falls within the target editing region, the method
struggles to recognize body parts behind the glass and fails to generate the edited target with consistent occlusion. Similar
challenges arise in scenarios like wire-mesh occlusion editing or veil occlusion editing. This limitation indicates that neither
Pose-Star nor existing editing models possess layer-awareness, necessitating more advanced layer-perceptive editing capa-
bilities. Another limitation involves cross-garment category edits (e.g., “hoodie —T-shirt”) when the original facial region
is occluded: such edits cannot preserve the subject’s original facial identity, instead producing randomly generated facial
identities—an undesirable outcome. This specific issue remains unaddressed in prior works; we propose that future research
could incorporate additional facial identity constraints to mitigate identity loss and random generation during editing.
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Figure 16. Multi-scenario Evaluation: Diverse Body Types, Multi-task, Age-specific, Partial Occlusion, Wide-angle Shots, Articulated
Poses
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Figure 17. Limitations. Foreground occlusion scene and random face ID problem.
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