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[36]Abstract

This supplementary material contains a description of our
experimental setup, encompassing the datasets employed,
specific implementation details, and configuration settings
for BLIP and medical CLIP (refer to Appendix A). Further-
more, we elaborate on the details regarding the image-text
augmentation in our subspace construction in Appendix B.
The proof of Theorem 1 (i.e., properties of MaxExp) is pre-
sented in Appendix C. We analyze different types of sub-
space construction strategies in Appendix D and hyper-
parameters in Appendix E, respectively. Further analyses
of diverse weighting mechanisms and diverse EMA strate-
gies for improved covariance matrix construction are in Ap-
pendices G & H. We then provide an additional discussion
regarding the effectiveness of our method in Appendix I.

A. Experimental Details
In this section, we provide a detailed description of the ex-
perimental configurations employed in our study, including
comprehensive information about the datasets used for ad-
versarial fine-tuning and the specific implementation details
of our proposed method.

A.1. Datasets
Following the evaluation protocols of prior works [34, 44],
we perform adversarial fine-tuning of the CLIP model on
the ImageNet training set [9]. For robustness evaluations,
we test the fine-tuned model on the ImageNet validation set
(ImageNet provides only validation split typically used for
testing, and a small part of the ImageNet train set is taken
for validation instead) along with an additional 14 zero-shot
datasets, encompassing a wide range of image recognition
tasks. Specifically, these 15 datasets cover four categories:
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• General Image Classification: ImageNet [9], STL-10
[7], CIFAR-10 and CIFAR-100 [22], Caltech-101 [12],
and Caltech-256 [14].

• Fine-Grained Classification: FGVC Aircraft [33],
Flower102 [35], Food101 [3], Oxford-IIIT Pets [37], and
Stanford Cars [21].

• Domain-Specific Classification: Describable Textures
Dataset (DTD) [6], EuroSAT [16], and PatchCamelyon
(PCAM) [43].

• Scene Recognition: SUN397 [46].
During the adversarial fine-tuning stage, we apply basic

data pre-processing by resizing each input image to 224 ×
224 pixels and performing a center crop for consistency.

A.2. Term Definition
For further clarifications, we provide official definitions of
diverse terms in this paper. (i) The worst-case joint adver-
sary is adversarial sample pair

(
x+δ

(m)
X , t+δ

(m)
T

)
of both

image and text modalities. The “worst-case adversary” is
the final step mth adversary pair from the iterative adver-
sary generation ofm steps, performing a joint attack, which
makes it even stronger than a single modality attack. (ii)
Intermediate adversarial samples are intermediate products{
x+δ

(i)
X

}m−1

i=1
from adversary generation. (iii) “Joint (in-

termediate) adversarial subspace” means that given an im-
age & its text, we augment the image, we augment the text,
we obtain adversarial embeddings, and we build a subspace
from them. “Intermediate” means adversarial embeddings
were obtained from adv. generation step i<m.

A.3. Implementation
Consistent with the settings of previous studies [34, 44],
we utilize the CLIP model [40] with the Vision Trans-
former (ViT) architecture of ViT-Base/32 [11]. For network
optimization, we employ the Stochastic Gradient Descent
(SGD) optimizer with a momentum of 0.9 and a batch size



Table 14. Summary of the original text prompt and its corresponding synonymous and antonymous phrases ordered in descending order
by the most-to-least related phrases to the original text prompt.

No. Positive prompt “Negating meaning” prompt

Original

0 This is a photo of a [CLS]. This is not a photo of a [CLS].

Synonymous/antonymous prompts

1 This is a picture of a [CLS]. This is not a picture of a [CLS].
2 This is an image of a [CLS]. This is not an image of a [CLS].
3 Here is a photo of a [CLS]. Here is not a photo of a [CLS].
4 Here is a picture of a [CLS]. Here is not a picture of a [CLS].
5 Here is an image of a [CLS]. Here is not an image of a [CLS].
6 This photograph shows a [CLS]. This photograph does not show a [CLS].
7 This is a depiction of a [CLS]. This is not a depiction of a [CLS].
8 This seems to be a photo of a [CLS]. This does not seem to be a photo of a [CLS].
9 This appears to be an image of a [CLS]. This does not appear to be an image of a [CLS].
10 This might be a picture of a [CLS]. This might not be a picture of a [CLS].
11 This could be an image of a [CLS]. This might not be an image of a [CLS].
12 Possibly a photograph of a [CLS]. Possibly, this is not a photograph of a [CLS].
13 Perhaps this is a picture of a [CLS]. Perhaps this is not a picture of a [CLS].
14 It seems like this is an image of a [CLS]. It seems that this is not an image of a [CLS].
15 This might represent a [CLS]. This might not represent a [CLS].
16 It is conceivable that this is a photo of a [CLS]. It’s conceivable that this isn’t a photo of a [CLS].
17 This may be an illustration of a [CLS]. This may not be an illustration of a [CLS].
18 Could this be an image of a [CLS]? Could this possibly not be an image of a [CLS]?
19 I wonder if this is a picture of a [CLS]. I wonder if this is not a picture of a [CLS].
20 There is a [CLS] in this photo. There is no [CLS] in this photo.

of 512. The learning rate is scheduled using cosine an-
nealing, starting from an initial value of 1 × 10−5 for full
fine-tuning of the vision encoder only. For Visual Prompt
Tuning (VPT) [18], we introduce token-level learnable pa-
rameters of size 100 into the vision branch of CLIP, us-
ing a learning rate of 40. During training, we generate
adversarial samples at both the image and text levels us-
ing Projected Gradient Descent (PGD) [31] with 3 itera-
tions. For image-level adversarial perturbations, we adopt
the ℓ∞-norm threat model with a maximum perturbation ra-
dius of ϵX = 1/255 and a step size of αX = 1/255, un-
less specified otherwise. For text-level adversarial pertur-
bations—applied only during fine-tuning—we set the step
size to αT = 1 × 10−4 and the corresponding perturbation
radius to ϵT = 2 × 10−4. We set the image augmentation
and text prompt synonym/antonym numbers to n = q = 20
for subspace construction. We adopt the MaxExp parame-
ter η = 10 following existing works [31]. The loss param-
eter β = 3.0 for a favorable trade-off between natural per-
formance and adversarial robustness. In line with previous
works on adversarially robust CLIP fine-tuning [34, 44], we
focus on evaluating robustness against three strong white-
box adversarial attacks: 20-step PGD [31], Carlini and
Wagner (CW) attack [5], and Auto-Attack (AA) [8]. In
addition to image-level only attacks, we also evaluate text-
level attacks: BERT-Attack [26] and Gradient-Based Dis-

tributional Attack (GBDA) [15], and bi-level attacks using
Collaborative Multimodal Adversarial Attack (Co-Attack)
[48] and Set-level Guidance Attack (SGA) [30], discussed
in the main text. Note that the setting of all the hyper-
parameters is obtained through the Hyperopt package [2]
for a 25 iteration hyper-parameter search on a 1% subset of
the ImageNet training set. The hyper-parameter setting was
then applied without tuning to adversarial fine-tuning of all
other scenarios. All experiments are conducted using eight
NVIDIA Tesla A100 GPUs.

Experimental setup for BLIP. To further evaluate zero-
shot robustness of our method on downstream tasks, we
extend our experiments to include the BLIP architecture
[25], a large-scale vision-language model that employs
bootstrapping language-image pre-training to unify vision-
language understanding tasks. Specifically, we assess zero-
shot adversarial robustness for two vision-language under-
standing tasks: image-text retrieval and image captioning.
Following Li et al. [25], we adversarially optimize the
Image-Text Contrastive (ITC) loss, Image-Text Matching
(ITM) loss, and Language Modeling (LM) loss to obtain
the robust BLIP. Afterward, we evaluate the robustness by
conducting the PGD attack method (iterative gradient as-
cent) based on the ITM loss for image-text retrieval and the
LM loss for image captioning, following the same criterion
(ϵX = 1/255) in our original manuscript by simply replac-



ing the objective function for adversary generation.

Experimental setup for Medical CLIP. To further ex-
tend our analysis in the context of robust medical imaging,
we employ a CLIP model based on ViT-B/16, pre-trained
specifically on radiology datasets based on CheXzero [42].
Following established protocols [23, 38, 42], we use the
MIMIC dataset [19], which is a comprehensive collection
of chest radiographs paired with detailed radiology reports,
for adversarial fine-tuning. The text encoder in the CLIP
model is based on BioBERT [24], a specialized biomedical
language model optimized for text mining in the biomedical
domain. During the zero-shot inference stage, we evaluate
the robust CLIP models on three standard multi-label ra-
diology datasets: ChestX-ray14 [45], CheXpert [17], and
PadChest [4]. We report the Area Under the Curve (AUC)
for both clean images and their adversarial counterparts,
which are generated using 20-step PGD [31] with the max-
imum perturbation strength ϵX = 1/255.

B. Image-text Augmentations
In the main text, we construct subspaces based on diverse
augmentations in both the image and text modalities. Be-
low, we elaborate on the implementation details for gener-
ating image-level augmentations and constructing synony-
mous and antonymous text prompts.

B.1. Image-level Augmentation Sets
For image-level augmentations, we employ Differentiable
Automatic Data Augmentation (DADA) [28], an efficient
method that utilizes a one-pass gradient optimization strat-
egy based on diverse sub-policies to generate augmenta-
tions of input images. To enhance computational efficiency,
we perform the policy search on a small subset (10%) of
the target dataset and then apply the learned policies to the
full dataset. Notably, since the policy search is conducted
prior to the adversarial fine-tuning stage, it does not affect
the training or inference efficiency.

B.2. Synonymous & Antonymous Text Prompts
To generate text-level augmentations, we construct both
synonymous and antonymous variations within the contex-
tual segments of the text prompts by utilizing a variety
of templates generated from ChatGPT-4 [36], obtaining a
spectrum of text prompts (labels). The complete list of these
text augmentations is provided in Table 14 for reference.
Specifically, all the synonymous/antonymous text prompts
are organized in descending order (from the most similar to
the least similar to the original prompt). In other words, we
organize these prompts according to their relative hardness,
ranging from easy to hard. Thus, we define the original text
prompts in the positive and negative domains:

P: This is a photo of a [CLS].

N: This is not a photo of a [CLS].
In our experiments, per class, we generate 20 text-level

augmented variants of these original text prompts by replac-
ing words in the context part.

C. Properties of MaxExp
Proof C.1 (Low Computational Complexity). The compu-
tational complexity of MaxExp has been analyzed and re-
ported as MaxExp(F) in [20].

Proof C.2 (Spectrum Whitening). Non-simple eigenvalues
are a classical topic in gradient computation of the Sin-
gular Value Decomposition and Eigenvalue Decomposition
[20, 32].

Proof C.3 (Spectrum Whitening). This property holds as
lim
η→∞

1 − (1 − λj)
η = 1 if λj > 0. Thus, whitening oc-

curs on non-zero singular values. By definition of spectrum
whitening known from the Whitening Principal Component
Analysis (WPCA), the whitening is achieved when λj ap-
proach 1 for some j > i while λi = 0 are rejected parts of
the spectrum as in WPCA.

For the second part, we simply set 1−(1−λ′)η = 0.5 and
solve for η. We notice that (i) 1−(1−λ)η is a monotonically
increasing function on 0 < λ < 1, producing the compact
domain [0, 1], (ii) it is equal to 0 at λ = 0 and 1 at λ = 1,
and (iii) its derivative of the Laplace shape, largest at λ =
0 (fastest growth) is rapidly decaying. This immediately
indicates that this function saturates rapidly, and for λ′, it
is halfway through the saturation on [0, 1] by the design of
MaxExp technique.

Proof C.4 (Robust Estimator Property). If ϕ∈Span(U1:r)
is added to the covariance estimation, then the original
Grassmann feature map with spectrum 1λj≥λ′ remains un-
changed as λj + δj(ϕ) ≥ λ′ where δj(·) is the change ϕ
imposes on singular value λj . It is easy to see that if ϕ is
equal u corresponding to λ′ then lim

n′→∞
λj

(
1

n+n′−1 ((n −

1)Σ+ n′ϕϕT )
)
= λ′ so 1λj+δj(ϕ)≥λ′ = 1λj≥λ′ .

Similarly, if ϕ∈Span(U1:r) then choose ϕ equal uj for
any λj≥λ′ then

∥∥(I−U1:rU
T
1:r

)
uj

∥∥
2
=

∥∥Iuj−uj

∥∥
2
= 0.

Proof of Theorem 1 (The MaxExp Approximation Error).
The MaxExp approximation error equals ϵ=(1−λi)η∥ϕ∥2
when cos(ϕ,ui)=1 because

ϵ = ∥(I−Σ)ηϕ∥2
=

∥∥(I−Udiag(Λ)UT )η∥ϕ∥2ui

∥∥
2

=
∥∥U(I− diag(Λ))ηUTui∥ϕ∥2

∥∥
2

= (1−λi)η∥ϕ∥2 (15)



Then, we solve Eq. (15) for η. As the function in Eq.
(15) is monotonically increasing, setting λi = λ′ gives us
the maximum possible error ϵ that decreases for any λi >
λ′.

D. Investigating Different Distances Between
Covariance Matrices

In addition to the MaxExp approximation of the projection
distance for subspaces used in the main text, we present
a comprehensive exploration of various covariance metrics
and their corresponding implementations.

Recall that covariance matrix Σ represents an image
with its augmentations. The corresponding (original and
augmented) text embeddings are given as matrix ΦT storing
vectors ϕ1, . . . ,ϕq′ .where q′= q+1 and q was the number
of synonymous/antonymous phrases.
Subspace-to-vector distance. Focusing on practical ad-
versarial threats at the image level, we investigate sub-
space construction based on Singular Value Decomposition
(SVD) within the image domain only and perform align-
ment between the resulting image embedding subspaces
and their corresponding vector text embeddings. Thus, the
projection distance between the subspace and its k-closest
(most relevant) text embedding vectors can be defined as:

d2(U,ΦT|k) = avg top k
(

∥∥(I−U1:rU
T
1:r)ϕ1

∥∥|22, . . . ,∥∥(I−U1:rU
T
1:r)ϕq′

∥∥|22),
(16)

where U1:r are the r leading singular vectors of SVD de-
composition U diag(Σ)VT of trace-normalized covariance
matrix Σ, i.e., Σ := Σ/(tr(Σ)+ν) where ν = 10−5 pre-
vents division by zero. Parameter 0 < r < rank(Σ) rep-
resents r-dimensional linear subspace. Moreover, opera-
tor avg top k(·) simply averages over k-smallest distances
passed into it as input arguments.
MaxExp approximation of the subspace-to-vector dis-
tance. Below, we explore a more efficient and stable sub-
space learning approach based on the MaxExp method dis-
cussed in Section 3.2, where the image with its augmenta-
tions is represented as a subspace, whereas text embeddings
are treated as vectors. Thus, the projection distance between
the (approximate) subspace and its k-closest (most relevant)
text embedding vectors can be defined as:

d2(Σ,ΦT|k) = avg top k
(

∥∥(I−Σ)ηϕ1

∥∥|22, . . . ,∥∥(I−Σ)ηϕq′

∥∥|22), (17)

SVD-based subspace-to-subspace image-text distance.
The original projection distance operates on subspaces ob-
tained via SVD, i.e., image and text modalities are repre-
sented by left singular vectors U and U′ of their respective

Table 15. Performance (%) of diverse distance metrics and config-
urations for adv. subspace learning during fine-tuning.

Subspace Metric Top-K Selection Clean PGD AA

Image Only

Standard
(SVD)

1 (Smallest) 58.34 39.40 37.84
3 58.75 39.56 37.97

All (Average) 59.01 39.80 38.10

MaxExp
1 (Smallest) 58.86 39.98 38.25

3 59.17 40.14 38.42
All (Average) 59.38 40.39 38.67

Image & Text
Frobenius norm - 60.16 40.86 39.05

SVD - 60.89 42.35 40.47
MaxExp - 61.70 43.88 42.18

feature covariance matrices Σ and Σ′. The projection dis-
tance between the image and text subspaces is defined as:

d2(U,U′) =
∥∥U1:rU

T
1:r −U′

1:rU
′T
1:r

∥∥2
F
. (18)

Frobenius norm image-text distance. For completeness,
we show that a mere Frobenius distance in place of the pro-
jected distance on subspaces is suboptimal. We define:

d2(Σ,Σ′) =
∥∥Σ−Σ′∥∥2

F
. (19)

MaxExp subspace-to-subspace image-text distance. In
our method, we focus on the MaxExp approximation (top
row of Eq. (5)) of the projected distance between subspaces,
used for both image and text modalities due to its advanta-
geous properties explained in Section 3.2 defined as:

d2(Σ,Σ′) =
∥∥(I−Σ)η − (I−Σ′)η

∥∥2
F
. (20)

The impact of different metrics. Below, we explore the
efficacy of various distance metrics in adversarial (sub-
space) learning between image and text modalities. Specif-
ically, we investigate the interaction between the image-
level adversarial subspace and its top k-closest text em-
beddings, selected based on the smallest k distances be-
tween the “image set” subspace and individual augmented
text embedding set of size q′ = q+1 elements. Table 15
shows that augmenting both the image and text modalities
within their respective subspaces improves both natural per-
formance and robustness in the zero-shot setting. More-
over, when subspace learning is applied solely to the im-
age modality, incorporating all the augmented examples en-
hances zero-shot performance. This substantiates the ne-
cessity of constructing subspaces based on intermediate ad-
versaries, which capture rich information about decision
boundaries. Standard SVD-based subspace learning is com-
putationally intensive, requiring 171.5 minutes per training
epoch, whereas our MaxExp-based approximate subspace
learning achieves greater efficiency with only 96.0 minutes.

E. Hyper-Parameter Analysis (Trade-off)
The trade-off between natural performance and adversar-
ial robustness has been extensively investigated in single-
modal adversarial training [10, 39, 47], yet it remains un-
derexplored within multimodal scenarios, especially for ro-
bust VLMs. To bridge this gap, we analyze the effect
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Figure 6. Hyper-parameter sensitivity analysis of our method w.r.t.
(a) β: the weighting factor between subspace-driven image-text
alignment for clean samples and robustness invariance of unified
subspaces for adversaries, and (b) η: the MaxExp parameters in-
terpolating between Forbenius norm and the soft approximation of
the projection distance between subspaces.

Table 16. Performance (%) of different text prompt augmenta-
tion types in Eq. (7) to output predictions during adv. fine-tuning.
The antonyms (not c) denote the negative text prompts of the tar-
get category c only, while the antonyms (all classes) represent the
negative text prompts for all C categories.

Text Prompt Type Clean PGD AA

Synonyms 60.25 43.63 41.85
Synonyms + Antonyms (All classes) 61.30 43.27 41.32

Synonyms + Antonyms (not c) 61.70 43.88 42.18

of hyper-parameter β, which balances between subspace-
driven image-text alignment using a classifier for clean sam-
ples and regularization term Ω(·) that aligns adversarial
image-text subspaces with the clean image-text subspace
without the use of labels. Figure 6a illustrates that higher
values of β lead to increased robustness, albeit with a reduc-
tion in natural performance. Conversely, enhancing clean
accuracy is associated with a decline in adversarial robust-
ness. Such a trade-off effect can also be interpreted as an
optimization balancing between natural risk and boundary
risk, as demonstrated in [47]. Our subspace-driven image-
text alignment for clean samples can be regarded as opti-
mizing a surrogate classification loss (natural risk) to match
the cross-modal subspaces for clean images and texts. The
regularizer Ω(·) contributes to minimizing the difference
between natural image-text subspace and their adversarial
counterparts (boundary risk).

In addition to the trade-off explicitly led by diverse op-
timizing focus, we also investigate the effect of the hyper-
parameter η, which interpolates between the Frobenius dis-
tance and soft approximation of the Grassmann feature map.
Figure 6b shows that increasing η enhances both the zero-
shot adversarial robustness and the clean accuracy. The per-
formance gain plateau when η reaches 10.

Table 17. Comparison of average clean and robust accuracy (%)
with and without our instance-wise weighting mechanism.

Configuration of Eq. (12) Clean PGD AA

w/o Weighting 61.26 43.20 41.49
w/ Weighting 61.70 43.88 42.18

Table 18. Average clean and robust accuracy (%) across 15
datasets of diverse EMA strategies for adversarial fine-tuning.

EMA Strategy Clean PGD AA

w/o EMA 61.70 43.88 42.18
Class-wise EMA 61.78 43.96 42.25

Instance-wise EMA 61.96 44.08 42.36

F. Impact of Different Text Prompt Augmenta-
tions

In Table 16, we evaluate the zero-shot performance by em-
ploying different types of text prompts for subspace con-
struction, augmenting the predictions as defined in Eq. (7)
in the main text. The results demonstrate that incorporat-
ing additional antonymous text prompts (details provided
in Appendix B.2) leads to improved clean accuracy in the
zero-shot setting. We compare two strategies for antony-
mous prompt augmentation: one that uses antonymous
prompts derived solely from the target label and another that
includes prompts from all categories. Notably, the approach
utilizing antonymous prompts only from the ground-truth
labels yields superior performance.

G. Impact of the Weighting Mechanism
Below, we investigate the effect of our instance-wise
weighting mechanism (Eq. (12)) based on the prediction
discrepancy for each adversarial subspace. As shown in Ta-
ble 17, we report both zero-shot clean and robust accuracy
with and without our weighting mechanism. We can ob-
serve that integrating the weighting mechanism boosts both
natural performance and adversarial robustness, justifying
the emphasis on stronger adversaries during training.

H. EMA for Covariance Construction.
To enhance the stability of our covariance estimation, we
employ an Exponential Moving Average (EMA) to itera-
tively update the accumulated covariance matrices of the
image and text embeddings across training epochs. No-
tice the EMA strategy is not used at all in our main
manuscript. Below, we update the accumulated covariance
matrix Σt

∗ at epoch t using the covariance matrix Σ∗ com-
puted from the augmented set, following the strategy:

Σt
∗ = τ Σ(t−1)

∗ + (1− τ)Σ∗, (21)

where hyper-parameter τ controls the exponential moving
average. Unless specified otherwise, we utilize the accu-
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Figure 7. Comparison of (a) the robust accuracy gap between non-
augmented and augmented adversaries, and (b) the corresponding
gap in feature-level distance differences, as illustrated in Figure
1b, with and without training-time augmentations.

mulated covariance matrix obtained for each augmented
set at each epoch. Considering that diverse augmentation
schemes are applied in different epochs, employing EMA
across epochs can further facilitate capturing a broader set
of underlying adversarial samples, thereby helping to avoid
robustness over-fitting to specific data.

We further investigate the impact of different Exponen-
tial Moving Average (EMA) strategies on zero-shot ad-
versarial robustness. Although the main manuscript omits
EMA for reasons of computational efficiency, we explore
two EMA methodologies: (i) class-wise EMA (faster and
less memory intense) and (ii) instance-wise EMA (more ac-
curate). As presented in Table 18, incorporating EMA to
stabilize the computation of covariance matrices results in
slight improvements in zero-shot performance on both clean
and adversarial samples.

I. Further Discussion on the Efficacy

In this section, we explore the fundamental reasons behind
the effectiveness of our proposed method. Specifically, we
aim to understand the benefits derived from our subspace-
driven adversarial fine-tuning. Building upon the insights
from Figure 1a, we investigate the robust accuracy gap be-
tween non-augmented (standard) adversarial examples and
augmented adversaries. For comparative analysis, we also
introduce a Test-Time Augmentation (TTA) to produce av-
eraged output based on a set of augmentations of the origi-
nal sample. Figure 7a indicates that relying solely on test-
time augmentation fails to mitigate the robustness degrada-
tion on unforeseen augmented data. In contrast, our method
incorporates subspace-level robustness invariance by learn-
ing a unified image-text subspace that captures underlying
adversarial threats, thereby improving zero-shot robustness.

We have shown in Figure 1b that, for prior sample-wise
adversarial fine-tuning methods, training-time augmenta-
tion typically struggles to close the feature-level distance
gap between augmented and non-augmented adversaries.
We further demonstrate that adopting test-time augmenta-
tion to produce an averaged and rectified prototype for each

feature does not help reduce this feature-level distance gap
(see Figure 7b).

In addition to validating the effectiveness of our method,
we also discuss its computational efficiency. As shown in
Table 13, our MaxExp-based approximate subspace learn-
ing strategy requires only 96 minutes per training epoch
during adversarial fine-tuning, compared to 171.5 minutes
per epoch for the standard SVD-based subspace approach.
This significant reduction in training time aligns with our
computational complexity analysis in Section 3.2. Further-
more, our method does not introduce additional modules
or parameters to the target foundational model, ensuring
that the inference time remains consistent with other ap-
proaches.

J. Extended Related Works

J.1. Multimodal Architectures
A pivotal breakthrough in vision-language learning came
with CLIP [40], which introduced contrastive pre-training
on a vast dataset of 400 million image-text pairs for cross-
modal feature alignment. This simple setup yields highly
generalizable features, enabling zero-shot transfer to down-
stream tasks without additional fine-tuning. Building on
CLIP’s success, recent Vision-Language Models (VLMs)
combine powerful language models with visual encoders
to handle more complex multimodal tasks. LLaVA (Large
Language and Vision Assistant) [29] is one such model that
connects a vision transformer to a Large Language Model
(LLM) and is trained end-to-end on visual instruction tun-
ing data. In contrast, Flamingo [1] is trained on exten-
sive web-curated corpora of interleaved images and text,
which equips it with strong in-context learning abilities for
multimodal tasks. Despite their impressive performance,
these vision-language architectures have demonstrated sus-
ceptibility to adversarial perturbations [49], wherein sub-
tle modifications to input images may cause even ad-
vanced VLMs to produce erroneous outputs. In this work,
we concentrate on the zero-shot adversarial robustness of
CLIP—arguably the cornerstone for vision-language foun-
dational model—and highlight how our framework can be
generalized to other architectures and applications.

J.2. Multimodal Adversarial Attacks
Adversarial perturbations pose substantial security concerns
in both the visual [5, 8, 31] and textual [15, 26] do-
mains. Although existing single-modal adversarial meth-
ods can degrade the zero-shot performance of VLMs, more
comprehensive multimodal attack strategies have emerged
to jointly compromise models across various modalities
[30, 48]. Notably, Zhang et al. [48] pioneered a suite of ad-
versarial scenarios targeting VLMs and introduced a multi-
modal attack approach that accounts for consistency across



different modalities. Subsequently, Guo et al. [30] focused
on enhancing transferability in multimodal adversarial at-
tacks by incorporating set-level alignment-preserving aug-
mentations to expand the range of potential inputs without
disrupting cross-modal consistency. In this paper, alongside
our evaluations of single-modal adversarial defenses, we
also examine zero-shot robustness against a variety of mul-
timodal attacks to assess more realistic adversarial threats.

J.3. Multimodal Adversarial Robustness

Adversarial training [10, 31, 47] remains the most reli-
able means of boosting robustness by strategically injecting
adversarial examples into the learning process. However,
scaling this approach to Vision-Language Models (VLMs)
[40] tends to be computationally prohibitive. Recent ef-
forts therefore focus on adversarial fine-tuning of pre-
trained VLMs [27, 41, 44] using parameter-efficient meth-
ods [13, 18, 50] to reduce the associated overhead. For in-
stance, Mao et al. [34] introduced an adversarial fine-tuning
mechanism based on text-guided contrastive optimization,
promoting alignment between perturbed image representa-
tions and their corresponding text embeddings. Wang et
al. [44] mitigated robustness deterioration by constraining
feature embeddings through the original pre-trained CLIP
model. Meanwhile, Schlarmann et al. [41] concentrated on
enhancing downstream task resilience. These earlier works
are predominantly grounded in alignment procedures at the
sample level, linking image and text embeddings or pairing
clean and adversarial instances, but often overlook distribu-
tional properties across broader collections of data points.
To address this gap, our study advocates aligning entire
image-text subspaces to leverage distributional robustness
in fine-tuning, particularly for zero-shot applications.
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