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1. Broader Impacts Statement
The introduction of our 3DRealCar dataset has profound
effects on self-driving research. We expect this dataset can
encourage extensive research to promote the advancement
of the community.

Research Impacts. By providing dense 360-degree
views of cars with point clouds as initialization, our 3DReal-
Car can be used to reconstruct high-quality 3D real cars for
3D printing and simulation in corner-case scenes. By pro-
viding detailed car parsing map annotations, our dataset can
be leveraged to segment 2D car components or point clouds.
Note that our 3DRealCar is the first dataset providing 3D car
parsing annotations. In our 3D reconstruction benchmarking
experiments, the reflective and dark lighting conditions of
our dataset bring challenges to existing methods to recon-
struct 3D cars under awful lighting conditions. We expect
our dataset to encourage widespread collaboration and accel-
erate the exploration of 3D real car reconstruction, parsing,
and simulation.

Societal Impacts. We collect our 3DRealCar dataset
with the consent of the owners. In addition, we blur license
plates and other private information. We try our best to hide
and preserve the privacy of owners. Therefore, our dataset
would not have any privacy violation problems. Due to our
dataset focusing on a car class, we believe our dataset has
the potential to be employed in future self-driving research
and improve self-driving systems further.

2. Limitation and Discussion
Although our 3DRealCar is the largest dataset for the 3D
real car dataset so far (2500 car instances with annotations),
its scale is still limited compared to other datasets in the
computer vision community. Therefore, we will further
extend our dataset in the future. Moreover, our 3DRealCar
dataset only provides the exterior views of cars without
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interior views. It is very crucial to reconstruct both exterior
and interior views of cars for car marketing agencies. We
will collect both exterior and interior views in the future
to further extend our 3D real car dataset for intact 3D car
models.

3. Experimental Settings

Note that all models used in this work are publicly available.
Each model we use is linked below:
1. 3D Reconstruction: Instant-NGP [8] �, 3DGS [5] �,

GaussianShader [4] �, and 2DGS [3] �.
2. 2D Car Parsing: MMsegmentation �. This repository

includes all 2D segmentation models [7, 10, 15, 16] we
used in this work.

3. Novel View Synthesis: Zero-123-XL [6] �.
4. 3D Generation: DreamCraft3D [12] �.
5. Corner-case Simulation: YOLOv5 and YOLOv8 [14]

�, YOLOv12 [13] �, CO-DETR [17]�, and libcom [9]
�. Specifically, we use YOLOv5 and YOLOv8 serial
models, YOLOv12, and CO-DETR as detectors and lib-
com for the simulation of corner-case scenes.
We express great appreciation to the authors of the afore-

mentioned repositories for their invaluable contributions.
For the GPU specification, we use 8 A100 GPUs for 3D
reconstruction, 3D generation, and novel view synthesis. We
utilize 2 3090 GPUs for other tasks. We use the default
hyperparameters for training.

4. Detailed Simulation Process and Additional
Visualizations

In this section, we show how we simulate corner-case scenes.
As shown in Fig. 1, we use images from Nuscenes [1] as
backgrounds and leverage ViT-Adapter [2] to segment entire
scenes for road masks. Then, we copy and paste the rendered
images from the reconstructed high-quality 3D cars into the
backgrounds with the guidance of road masks. In particu-
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Figure 1. Visualizations of ablating simulation procedures. We use a red rectangle to highlight the simulated vehicles.

Figure 2. More visualizations of simulated corner-case scenes. We use a red rectangle to highlight simulated vehicles. These corner-case
scenes show some vehicles have potential risks to traffic safety.

lar, we blur the edge between simulated foregrounds and
backgrounds and then we use a color transfer algorithm [11]
to make the whole simulated scene look harmonious. Fi-
nally, we use the shadow generation method in libcom [9] to
add shadow for the simulated cars such that the entire scene

looks photorealistic. However, this simulation method would
generate some unreasonable scenes. Therefore, we manually
intervene to select photorealistic corner-case scenes. Addi-
tional simulation results are shown in Figure 2.



Figure 3. Visualizations of point cloud inserting. We use red color to annotate inserting vehicular point clouds with high density for
better differentiation.

Figure 4. Visualizations of 3D point cloud parsing. With 2D car parsing map annotations, we lift the 2D car parsing maps into 3D point
clouds and segment car components.

5. Simulated Lidar Scenes

As depicted in Fig. 3, we can insert our car point clouds
into lidar scenes to simulate corner-case scenes, like a car
passing or parking horizontally in front of the ego car. To
better differentiate the inserted cars, we set them with dense
point clouds and red color. In a practical scene, the vehicular
point clouds should be sparse and only have one size that
could be scanned by the lidar. Therefore, when we apply the
inserted vehicular point clouds into a scene, we should make
the vehicular point clouds sparse and only contain one side.
By training on a variety of simulated scenarios, including
rare or dangerous situations that are difficult to collect in real
life, the self-driving system can learn to handle unexpected
events more effectively.

6. 3D Car Parsing

As shown in Fig. 4, our dataset is the first to provide 3D car
parsing annotations for parsing car components in 3D space.
Thanks to that we provide 2D car parsing maps for every
instance in our 3DRealCar dataset, we can lift 2D parsing
maps to 3D and segment each component for point clouds
and meshes. The primary purpose of these 3D car parsing
maps is to enable precise and comprehensive analysis of
vehicle structures, which is crucial for applications such as
autonomous driving, vehicle design, vehicle editing, and vir-
tual reality simulations. By using these detailed 3D parsing

maps, developers and researchers can improve object recog-
nition algorithms and enhance collision detection systems.
Furthermore, this dataset facilitates the training of machine
learning models to better understand the spatial relationships
and physical attributes of car components, leading to more
advanced and reliable automotive technologies.
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