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This supplementary material contains the following con-
tents. First, we explain the reasons why the proposed
category-specific selective feature enhancement (CSSFE)
model adopting the asymmetric loss [10] in Section 1.
Then, Section 2, as the supplement of ablation analysis,
studies the effects of different feature extraction backbones
and label embeddings generated by various pre-trained
large-scale language models on CSSFE.

1. The Reason for Adopting Ssymmetric Loss

Table 1. mAP (%) of CSSFE with different loss functions.

Datasets LT-VOC

Loss Total Head Medium Tail

DB loss 86.32 82.17 90.34 87.16
PG loss 86.35 82.23 90.68 87.17

ASL 86.44 82.33 91.10 87.14

Datasets LT-COCO

Loss Total Head Medium Tail

DB Focal 65.42 64.48 70.14 61.36
PG loss 65.93 65.46 71.08 62.22

ASL 66.95 66.98 71.33 62.38

In this paper, we use the basic asymmetric loss
(ASL) [10] to optimize the parameters of CSSFE. In fact,
there are some alternative options, such as distribution-
balanced (DB) loss [13] and probability-guided (PG)
loss [6]. However, we find that these losses are unsuitable
for CSSFE and have the problem of sacrificing the head
categories’ performance to improve the tail categories’ per-
formance. We use different loss functions to train CSSFEs
and count their performance on two datasets to prove this
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point. As shown in Table 1, the CSSFE trained by DB loss
or PG loss only performs well in the tail categories of LT-
VOC while having a performance degradation in the head
and medium category, decreasing the overall score. For LT-
COCO, the CSSFE trained by ASL loss is always the best.
This is because DB and CB Focal losses enhance the learn-
ing of the tail categories through category-balancing strate-
gies. Although this mechanism alleviates the problem of
sparse tail samples, it also produces a gradient suppression
effect on the head categories, causing the model to smooth
out the features of high-frequency samples during training
gradually. The core idea of CSSFE is to use the high sen-
sitivity of deep neural networks to the head categories to
improve the confidence of the medium and tail categories.
Therefore, DB and PG losses cannot help CSSFE achieve
satisfactory results.

2. Supplement of Ablation Analysis

Table 2. mAP (%) of CSSFE with different backbones. The best
results are bolded.

Datasets LT-VOC

Backbone Total Head Medium Tail

VGG 86.13 81.04 90.25 86.34
ResNet 86.38 81.93 91.16 87.26

ViT 86.44 82.33 91.10 87.14

Backbone LT-COCO

Methods Total Head Medium Tail

VGG 65.92 65.13 70.87 60.16
ResNet 66.93 66.96 71.21 62.41

ViT 66.95 66.98 71.33 62.38

1



2.1. Effect of Different Backbones
In this section, we replace the feature extraction backbone
of CSSFE with other popular networks to observe the im-
pact of different feature extractors on CSSFE. Specifically,
we select VGG16 [12] and ViT-16 [1], which are widely
used in the multi-label image classification task [2], as com-
parisons with ResNet50 [3] that we used. The results of
CSSFEs with different backbones counted on various are
summarized in Table 2. Through observation, we can find
that although the feature extraction capabilities of different
backbones vary, the performance of CSSFE is relatively sta-
ble, with fluctuations of mAP values are less than 1%. In
addition, the parameters of CSSFE with VGG16, ResNet50,
and ViT-16 are 142 MB, 151 MB, and 215 MB, respectively.
Considering the trade-off between performance and model
complexity, we suggest using ResNet50.

2.2. CSSFE with Various Label Embeddings

75

80

85

90

95

Total Head Medium Tail

m
A

P
 V

a
lu

es
 (

%
)

RIE Word2Vec GloVe Bert CLIP

55

60

65

70

75

Total Head Medium Tail

m
A

P
 V

a
lu

es
 (

%
)

RIE Word2Vec GloVe Bert CLIP

(a)

(b)

Figure 1. Performance of CSSFE with different label embeddings
on different datasets. (a) LT-VOC. (b) LT-COCO.

To verify the generalization of CSSFE with different la-
bel embeddings, we additionally select random initializa-
tion embedding (RIE) [7], Word2Vec [8], GloVe [9], and
BERT [5] to generate label embeddings. It is worth noting
that different label embeddings are generated by the same
prompt, e.g., “a photo of {class}.” The results of CSSFEs

with different label embeddings counted on LT-COV and
LT-COCO are drawn in Figure 1. By observing these bars,
we can find the following points. First, the behavior of
CSSFE with RIE is the weakest. This shows that the seman-
tic information in the pre-trained language model is bene-
ficial for long-tailed multi-label image classification tasks.
Second, CSSFE with CLIP achieves the best results, which
can be attributed to CLIP’s bidirectional integration of vi-
sual and textual information during training. This enhances
its semantic representations, making them particularly well-
suited for vision-related tasks. Finally, CSSFE maintains
competitive performance when using Word2Vec, GloVe, or
BERT, demonstrating its robustness in capturing relevant
semantic associations from various label embeddings for
the progressive attention enhancement mechanism. Based
on the above discussion, we select CLIP as the text encoder
for CSSFE.

2.3. Expanded Visualization and Analysis

(a) (b) (c)

Figure 2. Three small-sized objects and their class activation maps
generated by CSSFE with (first row) and without (second row)
the distribution-aware binary mask. (a) Head category: cup. (b)
Medium category: dog. (c) Tail category: airplane.

To further analyze the impact of the distribution-aware
binary mask, we visualize how the class attention scores
of different classes change before and after applying the
distribution-aware binary mask. As shown in Figure 2,
the binary mask effectively suppresses incorrect activations,
which are particularly prominent in head and medium cat-
egories due to the model’s overfitting to these frequently
seen classes. Through unidirectional semantic flow, the bi-
nary mask not only enhances the model’s attention to tail
categories but also suppresses interference from other cat-
egories. This explains why CSSFE can improve tail cat-
egory performance without compromising performance on
head or medium categories. It is worth noting that we de-
liberately selected three small-sized objects and used an-
other class activation mapping method Grad-CAM [11] for



visualization. The effectiveness of the results highlights
CSSFE’s localization capability under challenging condi-
tions, while their consistency with the results visualized us-
ing CAM in the main paper demonstrates the robustness of
CSSFE’s visual explanations.

2.4. Expanded Evaluation Metrics and Datasets

In this section, we focus on evaluating the CSSFE’s ability
to migrate domains. Specifically, we conduct additional ex-
periments on a long-tailed multi-label medical image clas-
sification dataset ODIR-5K dataset [14]. It is worth noting
that we chose the F1 score [4] to compare from a class-
weighted perspective in this section. The results of top-2
comparison methods and CSSFE are shown in Table 3. It is
evident that our proposed CSSFE achieves the best perfor-
mance, which further proves its robustness.

Table 3. F1 scores of different methods across various datasets.

Datasets LT-VOC LT-COCO ODIR-5K

CAE-Net 0.727 0.509 0.872
CPRFL 0.731 0.532 0.893

CSSFE 0.756 0.564 0.912
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