
Diffusion Transformer meets Multi-level Wavelet Spectrum
for Single Image Super-Resolution

Supplementary Material

This supplementary material includes more details and
analyses on the proposed method. First of all, we intro-
duce additional implementation details about the proposed
DTWSR. Then we provide more qualitative comparison to
demonstrate the superiority of our method on both fidelity
and image quality. Next we give additional analyses on
DTWSR, and finally we present additional visualization re-
sults to show the effectiveness of our model.

1. Additional implementation details

1.1. Model architecture

Table S1 presents the detailed architecture configurations of
the proposed DTWSR. Specially, we use slightly different
hyper-parameters for general SISR and face SISR. The final
parameter size is comparable to IDM (94M) [5] and DiWa
(92M) [8], but much less than SR3 (550M) [10],

Table S1. Architecture hyper-parameters for the proposed
DTWSR. Layers of the dual-decoder is the numbers of TransBlock
in LEDec/HDDec.

Task General 4× Face 8× Face 16×
Layers of dual-decoder 8/14 6/16 6/16
Hidden size 512 512 512
Heads 8 8 8
Minimal patch size 4 2 2
Parameters 107.8M 108.5M 108.5M

1.2. Implementation

We train the model using AdamW optimizer (with β1 = 0.5
and β2 = 0.9), with a fixed learning rate of 3×10−4 for the
generator and 3 × 10−5 for the discriminator. The overall
diffusion timesteps is set to 4. For the hyper-parameters of
α, β, γ in Equation 14, α is initialized as 0.15 and gradually
reduced to 0.02 at the final iteration; β and γ are set as 0.5.

For face SISR, images are super-resolved from 162 to
1282 for 8× and from 162 to 2562 for 16×. All ground-
truth (GT) and LR images are obtained from the original
dataset by bicubic downsampling. Horizontal flips are used
randomly for data augmentation in model training. For gen-
eral SISR, we crop the original images into patches of 1602

pixels as HR images. They are then downsampled to 402 by
the bicubic kernel as the corresponding LR images. Ran-
dom rotation and horizontal flips are performed for data
augmentation in model training.

The detailed training and sampling process are outlined
in Algorithm 1 and Algorithm 2 respectively.

Algorithm 1: Training process
Require: Ilr:LR image, I0: HR image, Gϕ: generator,

Dθ: discriminator, T : max timestep, q(·): diffusion
and denoising process (as refer to [12]).

1: repeat
2: t ∼ Uniform({1, ..., T})
3: It ∼ q(It|I0)
4: It−1 ∼ q(It−1|It, I0)
5: Ĩt−1 ∼ q(It−1|It,Gϕ(Ilr, It, t))
6: Take a gradient descent step on

▽θ

∣∣∣log(Dθ(Ĩt−1, It, t))− log(Dθ(It−1, It, t))
∣∣∣

7: Ĩ0 ∼ Gϕ(Ilr, It, t)

8: Ĩt−1 ∼ q(It−1|It, Ĩ0)
9: Take a gradient descent step on

▽ϕ

(∥∥∥Ĩ0 − I0

∥∥∥−
∣∣∣log(Dθ(Ĩt−1, It, t))

∣∣∣)
10: until Gϕ converged

Algorithm 2: Sampling process
Require: Ilr: LR image, Gϕ: generator, T : max timestep,

q(·): diffusion and denoising process (as refer to [12]).
1: IT ∼ N (0, I)
2: for all t = T, ..., 1 do
3: Ĩ0 = Gϕ(Ilr, It, t)

4: It−1 ∼ q(It−1|It, Ĩ0)
5: end for
6: return I0

2. More comparisons and visualizations
2.1. Inference speed
Firstly, We test the inference speed of our model and
compare with other diffusion model based methods1 on 1
NVIDIA Tesla A100. As shown in Table S2, our method is
more efficient than others.

2.2. Additional qualitative visualization
In this section, we provide more visual comparisons with
state-of-the-art methods on both face and general SISR. For

1All methods are evaluated based on the official codes and hyper pa-
rameters.



Table S2. Comparison on the inference speed of super-resolving a
single image.

Task Face 8× General 4×

Method
SR3
[10]

DiWa
[8]

IDM
[5] Ours

SRDiff
[7] DiWa Ours

Times(s) 36.2 5.44 40.1 0.11 22.3 62.5 14.9
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Figure S1. Qualitative comparison on CelebA [6] 8× SISR (16×
16 to 128× 128). Zoom in for best view.

face SISR, Figure S1, Figure S2 and Figure S3 show SISR
results of 8×, 16×, 12× and 15×. It can be observed that
our method consistently achieves higher fidelity and image
quality (see the eyes, mouth, hair and skin texture). Qual-
itative comparison on general SISR is presented in Figure
S4.

2.3. General SISR

To verify the generalizability of DTWSR, we perform the
comparison with diffusion model-based SOTA methods on
Manga109 (comic image dataset) [4], Set5 [2] and Set14
[13] SISR. Figure S5 and Figure S6 represent the compar-
isons on Mange109 and Set14 respectively, where the re-
sults generated by DTWSR are better than others in struc-
tural integrity and authenticity of detail.

3. Further analysis

In this section, further analyses are conducted to illustrate
the effectiveness of the proposed model.

16x IDM 16x Ours GTLR

Figure S2. Qualitative comparison on CelebA [6] 16× SISR (16×
16 to 256× 256). Zoom in for best view.

3.1. LR conditioning effected by dual-decoder

We use the relative log amplitudes of Fourier transformed
feature map [9, 11] to analyze the LR conditioning provided
in each decoder, as shown in Figure S7b. Specifically, a
higher value indicates that the model captures more infor-
mation from LR input in the corresponding frequency band.
Dual-decoder design. As shown in Figure S7a, com-
pared to freq-DiT, the dual-decoder (DTWSR (a)) enables
the model to capture more information from LR condition,
owning to the LR conditional features captured by each de-
coder can be more targeted.
LF residual. As shown in Figure S7b, the LR amplitudes
of DTWSR (b) are smaller than those of DTWSR (a) in
LEDec, but the opposite results are shown in HDDec, which
indicates that part of conditional LF denoising in LEDec is
transferred to HDDec. This suggests that LR conditioning
in HDDec also is used for LF sub-band denoising, hinder-
ing its focus on guiding HF denoising.
Tailored attention mask. The tailored attention masks are
proposed to avoid the unnecessary interaction among to-
ken. In this way, the LR condition focuses on condition-
ing denoising of LF components in the LEDec and con-
ditioning denoising of HF components in the HDDec. As



15x IDM 15x Ours GTLR 12x IDM 12x Ours

Figure S3. Qualitative comparison on CelebA [6] in 12× and 15× SISR (16× 16 to 192× 192 and 240× 240). Zoom in for best view.

Figure S4. Qualitative comparison on DIV2K [1] in 4× SISR. Zoom in for best view.

shown in Figure S7a, DTWSR (ours) captures more infor-
mation across all frequency bands, demonstrating that the
proposed components facilitates the LR conditioning for
better fidelity.

3.2. Relationships in multi-wavelet spectrum

We visualize the attention maps in LEDec and HDDec
separately to show the relationships among sub-bands in
multi-wavelet spectrums. The attention maps are ob-
tained by averaging the attention scores across multiple
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Figure S5. Qualitative comparison on Manga109 4× SISR. Zoom
in for best view.

Input LR SRDiff Ours GTResShift WGSR

Figure S6. Qualitative comparison on Set14 4× SISR. Zoom in
for best view.

(a) (b)

Figure S7. The relative log amplitudes of Fourier transformed fea-
ture map. LR condition for LF and HF denoted as LR in LEDec
and HDDec. The higher amplitude value indicates more dense in-
formation, and amplitude value is zero at 0π.

layers. As shown in Figure S8a, low-frequency sub-band
focuses mostly on the LR input for generation. In Fig-
ure S8b, it can be observed that (1) besides the LR condi-
tion, low-frequency sub-band also pays attention to high-
frequency sub-bands for information supplementing; (2)
high-frequency sub-bands not only attend to the LR condi-
tion, but also interact with other sub-bands on features that
have the same semantic information.

3.3. Visualization of the ablation experiments.
Figure S9 shows that the results obtained by DTWSR (ours)
are more consistent with the ground truth in identities (e.g.,
eyes and mouth in the first row) and details (e.g., hair and

(a) Attention map in LEDec (b) Attention map in HDDec

Figure S8. Example of attention maps with masks on 8× face
SISR. For 16 × 16 to 128 × 128 SISR with the minimum patch
size of 2, the lengths of tokens are 128 and 704 in LEDec and
HDDec respectively. (a) 0-63 are LR condition tokens (indicated
by Gray lines), 64-127 are noisy low-frequency sub-band tokens
(indicated by Red lines). (b) 0-63 are LR condition tokens, 64-
127 are low-frequency sub-band tokens from LEDec, 128-703 are
noisy high-frequency sub-bands tokens (indicated by Blue lines).
Zoom in for best view.

Pixel-DiT Freq-DiT DTWSR(a) DTWSR(b) DTWSR(ours) GT

Figure S9. Comparison of our ablations for 8× face SISR. In the
first row, the result generated by DTWSR (ours) is more similar
to ground truth, especially in terms of face characteristics, e.g.,
eyes and mouth. The second row indicates that our result is more
authentic in details than others, such the orientation of hair in front
of the forehead, etc.. Zoom in for best view.

skin in the second row), which reveals the effectiveness of
the proposed method. As shown in Figure S10, the absence
of the pyramid tokenization (DWTSR (c)) leads to degrada-
tion in both texture details (such as hair) and facial features
(such as eyes and mouths). When the model not to con-
sider the relationships between different levels of frequency
bands, noticeable artifacts appear in the image, such as in
the hair.

3.4. Non-2n magnification
For SISR with non-2n magnification, the size of LR image
cannot match that of low-frequency sub-band. Although the
requested information for decoding can be obtained via self-
attention operation, the inconsistency of receptive field be-
tween LR feature and each wavelet sub-bands will affect
model performance. In this work, we upsample the LR im-
age to have the same size as the low-frequency sub-band,
so that the resulted features after pyramid patchify have the
same receptive field. As demonstrated in Figure S11, with-
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Figure S10. Comparison of our ablations for 8× face SISR. The
”w/o pyramid tokenization” refers to replacing the pyramid tok-
enization in DTWSR with a vanilla tokenization with a patch size
of 4. The ”w/o correlation among frequency sub-bands” refers to
the model does not consider the correlation among the multiple
scale frequency sub-bands by applying a designed attention mask
to the attention modules.
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Figure S11. Illustration of the receptive field between LR and each
wavelet sub-bands in Non-2n magnification SISR. Here we take 2-
level wavelet spectrum as an example. The minimum patch size is
p. Each grid represents the feature receptive field after patchify.
The receptive field from the original LR image (a) is inconsistent
with those from the wavelet spectrum (b)(c)(e). The deviation can
be alleviated after upsampling (comparing (d) to (b)(c)(e)).

out LR upsampling, the receptive field of the resulted fea-
ture is not aligned with those from the wavelet spectrum
(comparing the contents in (a) and (b)(c)(e) in Figure S11).
By upsampling LR to the size of low-frequency sub-band,
the resulted feature after patchify will have the same recep-
tive field as those from each wavelet sub-band (comparing
the contents in (d) and (b)(c)(e) in Figure S11).

4. Additional SISR results
Figure S12 presents more high-resolution face images of
DTWSR sampled on CelebA [6] in 16×16 to 128×128 and
256×256. More high-resolution general images of DTWSR
sampled on DIV2K [1] and Manga109 [4] are shown in Fig-
ure S13, S14, S15, S16, S17 and S18. More comparisons
with SOTA method on real-world SR are shown in Figure
S19.
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Figure S12. Additional 8× and 16× face SISR results of DTWSR. Zoom in for best view.
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Figure S13. Additional 4× general (DIV2K[1]) SISR results of DTWSR. Zoom in for best view.
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Figure S14. Additional 4× general (DIV2K[1]) SISR results of DTWSR. Zoom in for best view.
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Figure S15. Additional 4× general (DIV2K[1]) SISR results of DTWSR. Zoom in for best view.
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Figure S16. Additional 4× general (DIV2K[1]) SISR results of DTWSR. Zoom in for best view.



Figure S17. Additional 4× general (Manga109[4]) SISR results of DTWSR. Zoom in for best view.



Figure S18. Additional 4× general (Manga109[4]) SISR results of DTWSR. Zoom in for best view.



Figure S19. Comparison on real-world SR [3]. Zoom in for best view.
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