Fewer Denoising Steps or Cheaper Per-Step Inference: Towards
Compute-Optimal Diffusion Model Deployment

Supplementary Material

In this supplementary material, we provide additional ex-
perimental results, analyses, and visualizations to comple-
ment our main paper.

e We provide an analysis on the module-level redundancy
across denoising steps in Appendix A.

¢ We examine the impact of varying the resolution scale (3
used in our mixed-resolution denoising on the final per-
formance in Appendix B.

* We show the ablation studies of hyperparameters m and
k in Appendix C.

* We demonstrate the effectiveness of using a small cali-
bration set to determine the optimal hyperparameters for
mixed-resolution denoising in Appendix D.

* We further evaluate the effectiveness of the proposed
PostDiff on Imagenet21K_Recaption dataset in Ap-
pendix E.

* We apply fine-tuning on top of PostDiff to further im-
prove its performance in Appendix F.

* We provide an overview figure to illustrate our hybrid
module caching strategy in Appendix G.

* We compare our PostDiff with prior works in Ap-
pendix H.

e We present additional visual examples and their corre-
sponding prompts in Appendix I and Appendix J, respec-
tively.

A. Motivations for Module-level Redundancy
from Profiling and Previous Works

To profile the module-level redundancy across denois-
ing steps, we calculate the average relative L; dis-
tances [6] of the i-th block’s feature map between two
consecutive steps, i.e., ¢t and t — 1, as Ll (i,t) =
|Fi(2) = Fi(ara)l, / | Fi(eo)ll,. where F(-) represents
the output feature map of layer 7. As shown in Fig. | (a), the
feature maps are highly similar across all blocks throughout
the entire denoising process, indicating the potential effec-
tiveness of caching and reuse across steps. This insight is
utilized by caching-based compression methods [5, 6].
Delving deeper, we calculate the average Lo distances
of different types of layers’ feature maps between two con-
secutive timesteps, as shown in Fig. 1 (b). We observe that
attention layers’ feature maps have relatively low distances
across all steps compared to convolution layers. This stabil-
ity enables effective caching with minimal impact on image
quality. Additionally, considering that (1) the text guidance
provided by cross-attention layers primarily determines the
image layout, i.e., the low-frequency structure of the image,
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Figure 1. Visualize the feature map distance across consecutive
denoising steps based on (a) block index, and (b) block types.

and (2) the semantics-planning phase for layout generation
occurs in the early denoising stages [4], as also discussed in
Sec. 2.1 of our main paper, it is feasible to use the cached
cross-attention feature map in the later denoising phase, as
the low-frequency information has been determined early
on.

B. Impact of Varying the Resolution Scale /3

We analyze the effect of varying 3, the scaling factor ap-
plied to the resolution discussed in Sec. 2.2 of our main
paper, on the performance of the mixed-resolution strategy.

Setup. We use SD V1.5 (DreamShaper-7 ver-
sion) as our backbone and the MS-COCO 2014 vali-
dation dataset as the test set. The scale factor f =
{0.375,0.5,0.625,0.75,0.875} (from the leftmost points to
the rightmost points on each curve in Fig. 2) is varied while
keeping s = 0.5 fixed, i.e., low generation resolution is ap-
plied only in the first half of the denoising steps.

Observations. As illustrated in Fig. 2, we observe that
(1) B = 0.51is generally a close-to-optimal choice, offering
relatively low FIDs while significantly reducing FLOPs. As
such, we adopt this design choice in our main paper; (2) as 3
increases from 0.5 to 0.875, the FIDs increase slightly. This
is likely due to the low-resolution part becoming closer to
the full resolution, which introduces more inaccurate high-
frequency components during the early denoising stage, as
analyzed in Sec. 2.1 of our main paper; (3) smaller 3 values
result in lower FLOPs, while an extremely small 3 = 0.375
leads to a notable FID increase, as the extremely low reso-
lution makes it difficult to recover fine details.
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Figure 2. The FID-FLOPs trade-off achieved under different de-
noising steps and different 8. The data points with the same num-
ber of denoising steps are annotated using the same shape.

C. Ablation Studies on £ and m

We conducted ablation studies on k (cache update fre-
quency) and m (the point at which CFG is abandoned) using
SD V1.5 on an NVIDIA A5000 GPU. As shown in Tab. 1,
alarger k (i.e., more cache reuse) or a smaller m (i.e., aban-
doning CFG earlier) results in greater degradation of gen-
eration quality. Based on this analysis, we adopt k£ = 2
and m = 0.75 in our paper, which strikes a sweet-spot
efficiency-fidelity trade-off.

Table 1. Ablation studies on k and m.

Settings ‘ FID | Clip Score 1 ‘ Latency (s) |

Original | 18.42 3080 | 293
k=2 16.65 30.25 1.14
k=3 | 2696 27.68 0.97
k=4 | 3922 26.16 0.94
k=5 | 5139 25.84 0.75

m =045 | 17.94 28.82 1.00

m=06 | 17.21 29.50 1.08

m=0.75 | 16.65 30.25 1.14
m=09 | 1649 30.06 1.26

D. Effectiveness of Small Calibration Sets

As mentioned in Sec. 2.4 of our manuscript, a small cali-
bration set can be leveraged to determine the optimal hyper-
parameter s, i.e., the portion of denoising steps performed
at a low generation resolution. We validate the effectiveness
of this strategy in this section.

Setup. Using SD V1.5 as the backbone, we ran-
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Figure 3. The achieved Clip Scores when using different calibra-
tion set sizes with varied s, where “Full” indicates no use of the
mixed-resolution denoising.

Table 2. Evaluation on Imagenet21K_Recaption dataset. Latency
is measured as the single-image generation time on an NVIDIA
A5000 GPU for SD V1.5 and LCM, and an NVIDIA H100 GPU
for PixArt-a.

Model | FID |  Clip Score T | Latency (s) |
SD V1.5 30.08 32.13 2.930
w/ PostDiff 27.57 31.75 1.139
LCM 39.00 28.72 0.825
w/ PostDiff 37.74 28.22 0.651
PixArt-« 35.58 32.40 1.752
w/ PostDiff 32.69 32.04 1.382

domly sampled subsets of the MS-COCO 2014 valida-
tion dataset with sizes of 500 and 1000. We tested the
average Clip Scores of the generated images for s =
{0.0 (Full), 0.3,0.5,0.6}.

Observations. As shown in Fig. 3, the performance
trends for the small calibration sets align well with those
for the full dataset. Specifically, a setting that achieves a
higher Clip Score on a small calibration set is highly likely
to achieve higher Clip Scores when using the full dataset.
This strategy eliminates the cumbersome process of hyper-
parameter tuning on a large amount of data.

E. Evaluation on the Imagenet21K_Recaption
Dataset

In Tab. 2, we apply PostDiff to SD V1.5, LCM, and
PixArt-« and evaluate the achieved performance on the Im-
agenet21K _Recaption dataset', where we randomly pick up

'hL,L,pS : / / huggingface . co / datasets / gmongaras /
Imagenet21K_Recaption
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Table 3. Performance of PostDiff w/o and w/ fine-tuning (FT).

Model | FT | FID|  Clip Score
SD VL5 63.64 19.47
v | 2228 28.68
BK-SDM.Tiny 19.87 25.87
v | 1938 28.44

10,000 text prompts.

The results show that applying PostDiff consistently im-
proves the FID of different models while maintaining a
comparable Clip Score and lower latency. This further
demonstrates the robustness and generality of our proposed
method across diverse text prompts and diffusion models.

F. Combine PostDiff with Fine-Tuning

As a common practice, diffusion models are typically
trained on a single resolution, which can lead to relatively
lower-quality outputs for low-resolution images. To ad-
dress this, we experiment with fixed resolution schedules
to fine-tune diffusion models, aiming to explore whether
this approach can enhance the performance of our mixed-
resolution strategy and, in turn, further improve PostDiff.

Setup. We fine-tune SD V1.5 (the original version, as we
were unable to obtain the dataset used for Dreamshaper’s
fine-tuning) and BK-SDM-Tiny [2] (a light-weight version
of SD V1.5) using the LAION-Art dataset’. The batch size
is set to 128, with 15,000 training iterations and a learning
rate of le-5. We set 5 = 1/2 and s = 1/2 for SD V1.5,
i.e., when the corresponding low-resolution steps (i.e., 501-
1000) are randomly selected, half-resolution images are
used to fine-tune the model, and 8 = 1/2 and s = 1/5
for BK-SDM-Tiny.

Observations. As shown in Tab. 3, fine-tuning notably
improves both FID and Clip Score, demonstrating the com-
patibility of our PostDiff with fine-tuning. Given that this
process is fast and lightweight (about one day using one
NVIDIA H200 GPU for SD V1.5), it provides a practical
way to deploy PostDiff with enhanced performance while
maintaining high generation efficiency.

G. Hlustration of Hybrid Module Caching

In Fig. 4, we illustrate our hybrid module caching strategy,
which effectively leverages feature redundancy across dif-
ferent timesteps, complementing the method description in
Sec. 2.5 of our main paper.
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Figure 4. Overview of our hybrid module caching strategy.

H. Comparisons with Prior Works

PostDiff adopts a post-training setting, i.e., it requires no
fine-tuning and is easy to use. The effectiveness of mixed-
resolution denoising in this setting stems from the distinct
emphasis on low- and high-frequency components in the
early and late denoising stages. In contrast, Pyramid Flow
[1] interprets the diffusion trajectory as a multi-stage pyra-
mid and trains all pyramid stages end-to-end from scratch
or through model-specific fine-tuning, where the denoising
process is explicitly adapted to the chosen resolution. The
two works leverage different aspects of resolution.

DeepCache [5] is specifically tailored for U-Net,
whereas PostDiff is applicable to both U-Net and DiT,
achieving a 3.72 FID improvement with a 32.7% latency
reduction on PixArt-o. Furthermore, neither DeepCache
nor Faster Diffusion [3] addresses redundant CFG dur-
ing the late denoising phase. In contrast, PostDiff re-
moves this redundancy to further boost efficiency, achiev-
ing 43.1%/34.4% latency reduction and improving FID by
1.2/1.1 compared to Faster Diffusion and DeepCache, re-
spectively (see Tab. 3 of our main paper).

I. More Visualization Results

We visualize the text-to-image results generated by the orig-
inal models alongside those produced using our PostDiff
approach in Fig. 5, as a complement to Fig. 6 of our main
paper. As evidenced by the FID Scores, PostDiff achieves
significant speedups while preserving details and, in some
cases, further enhances visual quality.

In addition, we include additional visual samples along
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with Clip Scores at each denoising step under different
mixed-resolution settings in Fig. 6, as a complement to Fig.
3 of our main paper. It is consistently observed that utiliz-
ing low-resolution images to capture low-frequency compo-
nents can potentially improve the final results.

Furthermore, we also provide additional visual examples
showcasing the impact of different choices for C' A¢yche With
varying m values in Fig. 7, as a complement to Sec. 2.5
of our main paper. The “Cond” choice generally performs
best, maintaining better consistency with the prompt.

J. Prompts for Text-to-Image Generation

In this section, we provide the prompts we used to generate
images in the main paper and supplementary material.

J.1. Figure 6 in the Main Paper

J.1.1.SD V1.5

1. A mystical underwater scene with glowing coral

2. A bustling cyberpunk metropolis at night, illuminated by

a kaleidoscope of neon lights and holographic advertise-

ments. The streets are crowded with people wearing fu-

turistic attire.

A forest with glowing mushrooms and creatures.

A fantasy castle on a hill surrounded by clouds.

5. A snowy mountain landscape with a cozy cabin and
smoke coming from the chimney.

6. Imagine and detail very clearly: the exciting rebirth of an
energetic being in the vast void of space, together with
a glorious phoenix. It begins with a stellar background
that dazzles with the beauty of the cosmos, with brilliant
nebulas and resplendent constellations.

J.1.2. PixArt-o

1. A stunning Japanese-inspired fantasy painting of a lone
samurai, silhouetted against a massive full moon, stand-
ing beneath a windswept, crimson-leafed tree. Falling
petals swirl around him, creating a melancholic yet
serene atmosphere. The dramatic chiaroscuro lighting
highlights the dramatic contrast between the cool-toned
background of deep blues and grays and the warm reds
of the foliage. This captivating scene is reminiscent of
Yoshitaka Amano’s work, with the dramatic lighting of
Ivan Shishkin.

2. MysticSplash. Ink-splash-style. Ink-splash-style. Ex-
treme closeup of a dapper figure in a stylized, richly de-
tailed black top hat, adorned with decorative golden ac-
cents, stands against a white background. The character
is a skeleton with very detailed skull and long canines as
vampire fangs. He cloaked in a vibrant victorian jacket,
featuring intricate golden embellishments and a deep red
vest underneath. He wears a large victorian monocle
with a yellow-tinted lense and copper frame very red-
dish. Exquisite details include a shiny silver cross and

hal

a blue gem on the chest, harmonizing with splashes of
paint in vivid hues of blue, gold, and red that artisti-
cally cascade around the figure, blending an impression-
istic flair with elements of surrealism. The atmosphere is
whimsical and opulent, evoking a sense of grandeur and
mystery.

3. An ancient, overgrown temple in a dense jungle, illumi-
nated by the soft light of early morning.

4. The image is a landscape photograph of a mountain
range with a river flowing through it. The river is sur-
rounded by a rocky shoreline with small pebbles and
boulders. The water is a deep blue color and reflects the
mountains and trees in the water. The mountains in the
background are tall and imposing, with a mountain peak
in the distance. The sky is clear and blue, and the sun
is shining brightly, creating a beautiful reflection of the
mountains on the water’s surface. The overall mood of
the image is peaceful and serene. mad-sprkingtr, flrlizer.

5. A portrait of a cybernetic geisha, her face a mesmer-
izing blend of porcelain skin and iridescent circuitry.
Her elaborate headdress is adorned with bioluminescent
flowers and delicate, glowing wires. Her kimono, a mas-
terpiece of futuristic design, shimmers with holographic
patterns that shift and change, revealing glimpses of the
complex machinery beneath. Her eyes gaze directly at
the viewer with an enigmatic expression.

6. A single, crazy blue and black spaceship in the sky. It
overwhelms the viewer with its artistic flying skills while
trailing a meteor tail. Ace pilot of the Republic who was
unrivalled in the 1940s. His second name is: The Magi-
cian of the Blue Wings, a genius aviator, one of a kind
in 100 years. The warriors who challenged him, were
destroyed by him, were overrun by him and scattered
became many stars. The Milky Way is said to be the
graveyard of such aerialists.

J.2. Figure 5 in the Supplementary Material

J.2.1.LCM

1. A massive wave crashing onto a rocky shore, with a
lone figure standing defiantly against the storm, holding
a glowing staff.

2. A whimsical town where all the buildings are made of
candy, with rivers of chocolate and lollipop streetlights
glowing faintly in the dusk.

3. The long journey home, vibrant glow.

4. Parisian luxurious interior penthouse bedroom, dark
walls, wooden panels.

5. Novuschroma style cup of coffee with swirling steam.

6. Scottish fold kitten, professional photo, in snow, high
detail, close-up view, quantum rendering, masterpiece,
professional photo.
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Figure 5. More visualization of generated images of different diffusion models w/o and w/ using our PostDiff.

J.2.2. SDXL

1.

Floating market of old Bangkok by day, atmospheric
lighting, awesome background, highly detailed, cine-
maticfantasy, dreaming, best quality, double exposure,
realistic, whimsical, fantastic, splash art, intricate de-
tailed, hyperdetailed, maximalist style

A cybernetic warrior with mechanical arms and glowing
red eyes.

A smiling beautiful sorceress with long dark hair and
closed eyes wearing a dark top surrounded by glow-
ing fire sparks at night, symmetrical body, symmetri-
cal face, symmetrical eyes, magical light fog, deep fo-
cus+closeup, hyper-realistic, volumetric lighting, dra-
matic lighting, beautiful composition, intricate details,
instagram, trending, photograph, film grain and noise,
8K, cinematic, post-production.

Miniature sailing ship sailing in a heavy storm inside of
a horizontal glass globe inside on a window ledge golden
hour, home photography, 50mm, Sony Alpha a7.

. Little cute gremlin sitting on a bed at night thinking

about the world, cinematic, muted colors, faded, by pixar
and dreamworks.

A regal elf queen sitting on a crystalline throne, her gown
shimmering like liquid silver, with a crown of glowing
flowers.

(1]

(2]

(3]

(4]

(5]

(6]
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Figure 6. Visualize the Clip Score after each denoising step using full resolution (row 1) and mixed resolution (rows 2-5). The steps using
low generation resolution are highlighted in green and those using high generation resolution are highlighted in orange.
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Figure 7. Generation results using different choices of C'Acache With varying m. “Ori” indicates no use of cross-attention cache.
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