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6. More Details of Ablation Study

SVTRv2 builds upon the foundation of SVTR by introduc-
ing several innovative strategies aimed at addressing chal-
lenges in recognizing irregular text and modeling linguistic
context. The key advancements and their impact are de-
tailed as follows:

Removal of the rectification Module and introduction
of MSR and FRM. In the original SVTR, a rectification
module is employed to recognize irregular text. However,
this approach negatively impacts the recognition of long
text. To overcome this limitation, SVTRv2 removes the
rectification module entirely. To effectively handle irreg-
ular text without compromising the CTC model’s ability to
generalize to long text, MSR and FRM are introduced.

Improvement in feature resolution. SVTR extracts vi-
sual representations of size H

16×
W
4 ×D2 from input images

of size H×W ×3. While this approach is effective for reg-
ular text, it struggles with retaining the distinct characteris-
tics of irregular text. SVTRv2 doubles the height resolution
( H16 → H

8 ) of visual features, producing features of size
H
8 × W

4 ×D2, thereby improving its capacity to recognize
irregular text.

Refinement of local mixing mechanisms. SVTR em-
ploys a hierarchical vision transformer structure, leverag-
ing two mixing strategies: Local Mixing is implemented
through a sliding window-based local attention mechanism,
and Global Mixing employs the standard global multi-head
self-attention mechanism. SVTRv2 retains the hierarchical
vision transformer structure and the global multi-head self-
attention mechanism for Global Mixing. For Local Mixing,
SVTRv2 introduces a pivotal change. Specifically, the slid-
ing window-based local attention is replaced with two con-
secutive group convolutions (Conv2) [21]. It is important to
highlight that unlike previous CNNs, there is no normaliza-
tion or activation layer between the two convolutions.

Semantic guidance module. The original SVTR model
relies solely on the CTC framework for both training and
inference. However, CTC is inherently limited in its abil-
ity to model linguistic context. SVTRv2 addresses this by
introducing a Semantic Guidance Module (SGM) during
training. SGM facilitates the visual encoder in capturing
linguistic information, enriching the feature representation.
Importantly, SGM is discarded during inference, ensuring
that the efficiency of CTC-based decoding remains unaf-
fected while still benefiting from its contributions during
the training phase.

6.1. Progressive Ablation Experiments
To comprehensively evaluate the contributions of every
SVTRv2 upgrade, a series of progressive ablation experi-
ments are conducted. Tab. 7 outlines the results, along with
the following observations:

1. Baseline (ID 0): The original SVTR serves as the
baseline for comparison.

2. Rectification Module Removal (ID 1) reveals that
while the rectification module (e.g., TPS) improves irreg-
ular text recognition accuracy, it hinders the model’s ability
to recognize long text. This confirms its limitations in bal-
ancing different recognition tasks.

3. Improvement in Feature Resolution (ID 2): Doubling
the height resolution ( H16 → H

8 ) significantly boosts perfor-
mance across challenging datasets, particularly for irregular
text.

4. Replacement of Local Attention with Conv2 (ID 3):
Replacing the sliding window-based local attention with
two consecutive group convolutions (Conv2) yields im-
provements in artistic text, with a 3.0% increase in accu-
racy. This result highlights the efficacy of convolution-
based approaches in capturing character-level nuances, such
as strokes and textures, thereby improving its ability to rec-
ognize artistic and irregular text.

5. Incorporation of MSR and FRM (ID 4 and ID 5):
These components collectively enhance accuracy on ir-
regular text benchmarks (e.g., Curve), surpassing the
rectification-based SVTR (ID 0) by 6.0%, without compro-
mising the CTC model’s ability to generalize to long text.

6. Integration of SGM (ID 6): Adding SGM yields sig-
nificant gains on multiple datasets, improving accuracy on
OST by 5.11% and U14M by 2.28%.

It can be summarized as that, by integrating Conv2,
MSR, FRM, and SGM, SVTRv2 significantly improves per-
formance in recognizing irregular text and modeling lin-
guistic context over SVTR, while still maintaining robust
long-text recognition capabilities and preserving the effi-
ciency of CTC-based inference.

7. SVTRv2 Variants
There are several hyper-parameters in SVTRv2, including
the depth of channel (Di) and the number of heads at each
stage, the number of mixing blocks (Ni) and their permuta-
tion. By varying them, SVTRv2 architectures with different
capacities could be obtained and we construct three typical
ones, i.e., SVTRv2-T (Tiny), SVTRv2-S (Small), SVTRv2-
B (Base). Their detail configurations are shown in Tab. 8.

In Tab. 8, [L]m[G]n denotes that the first m mixing



IIIT5k SVT ICDAR2013 ICDAR2015 SVTP CUTE80 ∥ Curve Multi-Oriented Artistic Contextless Salient Multi-Words General

ID Method Common Benchmarks (Com) Avg Union14M-Benchmark (U14M) Avg LTB OST Size FPS

0 SVTR (w/ TPS) 98.1 96.1 96.4 89.2 92.1 95.8 94.62 82.2 86.1 69.7 75.1 81.6 73.8 80.7 78.44 0.0 71.2 19.95 141
1 0 + w/o TPS 98.0 97.1 97.3 88.6 90.7 95.8 94.58 76.2 44.5 67.8 78.7 75.2 77.9 77.8 71.17 45.1 67.8 18.10 161

2 1 + H
16

→ H
8

98.9 97.4 97.9 89.7 91.8 96.9 95.41 82.2 64.3 70.2 80.0 80.9 80.6 80.5 76.95 44.8 69.5 18.10 145
3 2 + Conv2 98.7 97.1 97.1 89.6 91.6 97.6 95.28 82.9 65.6 73.2 80.0 80.5 81.6 80.8 77.78 47.4 71.1 17.77 159
4 3 + MSR 98.7 98.0 97.4 89.4 91.6 97.6 95.44 87.4 83.7 75.4 80.9 81.9 83.5 82.8 82.22 50.9 72.5 17.77 159
5 4 + FRM 98.8 98.1 98.4 89.8 92.9 99.0 96.16 88.2 86.2 77.5 83.2 83.9 84.6 83.5 83.86 50.7 74.9 19.76 143
6 5 + SGM 99.2 98.0 98.7 91.1 93.5 99.0 96.57 90.6 89.0 79.3 86.1 86.2 86.7 85.1 86.14 50.2 80.0 19.76 143

Table 7. Ablation study of the proposed strategies on Com and U14M, along with their model sizes and FPS.

Models [D0, D1, D2] [N1, N2, N3] Heads Permutation

SVTRv2-T [64,128,256] [3,6,3] [2,4,8] [L]6[G]6
SVTRv2-S [96,192,384] [3,6,3] [3,6,12] [L]6[G]6
SVTRv2-B [128,256,384] [6,6,6] [4,8,12] [L]8[G]10

Table 8. Architecture specifications of SVTRv2 variants.
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Figure 6. Relationships of the three real-world training sets and
their overlapping with U14M.

blocks in SVTRv2 utilize local mixing, while the last n mix-
ing blocks employ global mixing. Specifically, in SVTRv2-
T and SVTRv2-S, all blocks in the first stage and the first
three blocks in the second stage use local mixing. The last
three blocks in the second stage, as well as all blocks in the
third stage, are global mixing. In the case of SVTRv2-B,
all blocks in the first stage and the first two blocks in the
second stage use local mixing, whereas the last four blocks
in the second stage and all blocks in the third stage adopt
global mixing.

8. More Details of Real-World Datasets
For English recognition, we train models on real-world
datasets, from which the models exhibit stronger recogni-
tion capability [4, 25, 37]. There are three large-scale real-
world training sets, i.e., the Real dataset [4], REBU-Syn
[37], and Union14M-L (U14M-Train) [25]. However, as
shown in Fig. 6 and Tab. 9, the former two significantly
overlap with U14M, thus not suitable for model training
when using U14M at the evaluation dataset. Surprisingly,
U14M-Train is also overlapped with U14M in nearly 6.5k

Algorithm 1: Inference Time
Input : A set of images I with size |I| = 3000,

batch size B = 1, N text lengths
Output: Overall inference time of the model

Initialize two lists: total time list and
count list of size N , initialized to 0;

for each image Ij in I where j ∈ {1, 2, . . . , 3000}
do

Determine the text length li for image Ij ;
Perform inference on Ij with text length li;
Record inference time tij ;
total time list[li] += tij ;
count list[li] += 1;

Initialize avg time list;
for each text length li where i ∈ {1, 2, . . . , N} do

if count list[i] > 0 then
avg time list[i] =
total time list[i] /
count list[i];

Compute the final average inference time:

inference time =
1

N

N∑
i=1

avg time list[i]

return inference time;

text instances across the seven subsets. It means the mod-
els trained based on U14M-Train suffer from data leakage
when tested on U14M, thus the results reported by [25]
should be updated. To this end, we create a filtered ver-
sion of Union14M-L, termed as U14M-Filter, by filtering
these overlapping instances from the training set. This new
dataset is used to train SVTRv2 and other 24 methods we
reproduced.
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2,426 1,369 900 779 1,585 829 400,000

Real [4] 1,276 440 432 326 431 193 254,174
REBU-Syn [37] 1,285 443 462 363 442 289 260,575

U14M-Train [25] 9 3 30 37 11 96 6,401

Table 9. Overlapping statistics between three real-world training sets and U14M.

9. More Details of Inference Time
In terms of the inference time, we do not utilize any accel-
eration framework and instead employ PyTorch’s dynamic
graph mode on one NVIDIA 1080Ti GPU. We first mea-
sure the inference time for 3,000 images with a batch size
of 1, calculating the average inference time for each text
length. We then compute the arithmetic mean of the aver-
age time across all text lengths to determine the overall in-
ference time of the model. Algorithm 1 details the process
of measuring inference time.

10. Results when Trained on Synthetic
Datasets

Previous research typically follows a typical evaluation
protocol, where models are trained on synthetic datasets
and validated using Com, the six widely recognized real-
world benchmarks. Following this protocol, we also train
SVTRv2 and other models on synthetic datasets. In addition
to evaluating SVTRv2 on Com, we assess its performance
on U14M. The results offer a comprehensive evaluation of
the model’s generalization capabilities. For methods that
have not reported performance on challenging benchmarks,
we conduct additional evaluations using their publicly avail-
able models and present these results for comparative anal-
ysis. As illustrated in Tab. 10, models trained on synthetic
datasets exhibit notably lower performance compared to
those trained on large-scale real-world datasets (see Tab. 3).
This performance drop is particularly pronounced on chal-
lenging benchmarks. These findings highlight the critical
importance of real-world datasets in improving recognition
accuracy.

Despite trained on less diverse synthetic datasets,
SVTRv2 also exhibits competitive performance. On irreg-
ular text benchmarks, such as Curve and Multi-Oriented,
SVTR achieves strong results, largely due to its integrated
rectification module [40], which is particularly adept at han-
dling irregular text patterns, even when trained on synthetic
datasets. Notably, SVTRv2 achieves a substantial 4.8%
improvement over SVTR on Curve, further demonstrating
its enhanced capacity to address irregular text. Overall,
these results demonstrate that, even when trained solely on
synthetic datasets, SVTRv2 exhibits strong generalization
capabilities, effectively handling complex and challenging
text recognition scenarios.

11. Qualitative Analysis of Recognition Results
The SVTRv2 model achieved an average accuracy of
96.57% on Com (see Tab. 3). To investigate the underly-
ing causes of the remaining 3.43% of recognition errors, we
conducted a detailed analysis of the misclassified samples,
as illustrated in Fig. 7 and Fig. 8. While previous research
has typically categorized Com into regular and irregular
text. However, these error samples indicate that the majority
of incorrectly recognized text is not irregular. This suggests
that, under the current training paradigm using large-scale
real-world datasets, a more rigorous manual screening pro-
cess is warranted for common benchmarks.

Based on this one-by-one manual viewing, we identified
five primary causes of recognition errors: (1) blurred, (2)
artistic, (3) incomplete text, (4) others, and (5) image text
labeling errors (Labelerr). Specifically, the blurring text
includes issues such as low resolution, motion blur, or ex-
treme lighting conditions. The artistic text category refers to
unconventional fonts, commonly found in business signage,
as well as some handwritten text. Incomplete text arises
when characters are obscured by objects or lost due to im-
proper cropping, requiring contextual inference. Image text
labeling errors occur when the given text labels contain in-
accuracies or include characters with phonetic symbols. As
shown in Tab. 11, after excluding samples affected by la-
beling inconsistencies, the remaining recognition errors pri-
marily stemmed from blurred (30.81%), artistic (24.24%),
and incomplete text (31.82%). This result highlights that
SVTRv2’s recognition performance needs further improve-
ment, particularly in handling complex scenarios involving
these challenging text types.

12. Standardized Model Training Settings
The optimal hyperparameters for training different models
vary and are not universally fixed. However, key factors
such as training epochs, data augmentations, input size, and
evaluation protocols significantly influence model accuracy.
To ensure fair and unbiased performance comparisons, we
standardize these factors across all models, as outlined in
Tab. 12. This uniform training and evaluation framework
ensures consistency while allowing each model to approach
its best accuracy. To maximize fairness, we conducted ex-
tensive hyperparameter tuning for model-specific settings,
including the optimizer, learning rate, and regularization
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Method Venue Encoder Common Benchmarks (Com) Avg Union14M-Benchmark (U14M) Avg Size

ASTER [40] TPAMI 2019 ResNet+LSTM 93.3 90.0 90.8 74.7 80.2 80.9 84.98 34.0 10.2 27.7 33.0 48.2 27.6 39.8 31.50 27.2
NRTR [38] ICDAR 2019 Stem+TF6 90.1 91.5 95.8 79.4 86.6 80.9 87.38 31.7 4.40 36.6 37.3 30.6 54.9 48.0 34.79 31.7

MORAN [32] PR 2019 ResNet+LSTM 91.0 83.9 91.3 68.4 73.3 75.7 80.60 8.90 0.70 29.4 20.7 17.9 23.8 35.2 19.51 17.4
SAR [29] AAAI 2019 ResNet+LSTM 91.5 84.5 91.0 69.2 76.4 83.5 82.68 44.3 7.70 42.6 44.2 44.0 51.2 50.5 40.64 57.7
DAN [46] AAAI 2020 ResNet+FPN 93.4 87.5 92.1 71.6 78.0 81.3 83.98 26.7 1.50 35.0 40.3 36.5 42.2 42.1 32.04 27.7
SRN [55] CVPR 2020 ResNet+FPN 94.8 91.5 95.5 82.7 85.1 87.8 89.57 63.4 25.3 34.1 28.7 56.5 26.7 46.3 40.14 54.7

SEED* [36] CVPR 2020 ResNet+LSTM 93.8 89.6 92.8 80.0 81.4 83.6 86.87 40.4 15.5 32.1 32.5 54.8 35.6 39.0 35.70 24.0
AutoSTR* [59] ECCV 2020 NAS+LSTM 94.7 90.9 94.2 81.8 81.7 - - 47.7 17.9 30.8 36.2 64.2 38.7 41.3 39.54 6.00
RoScanner [57] ECCV 2020 ResNet 95.3 88.1 94.8 77.1 79.5 90.3 87.52 43.6 7.90 41.2 42.6 44.9 46.9 39.5 38.09 48.0

ABINet [15] CVPR 2021 ResNet+TF3 96.2 93.5 97.4 86.0 89.3 89.2 91.93 59.5 12.7 43.3 38.3 62.0 50.8 55.6 46.03 36.7
VisionLAN [47] ICCV 2021 ResNet+TF3 95.8 91.7 95.7 83.7 86.0 88.5 90.23 57.7 14.2 47.8 48.0 64.0 47.9 52.1 47.39 32.8

PARSeq* [4] ECCV 2022 ViT-S 97.0 93.6 97.0 86.5 88.9 92.2 92.53 63.9 16.7 52.5 54.3 68.2 55.9 56.9 52.62 23.8
MATRN [34] ECCV 2022 ResNet+TF3 96.6 95.0 97.9 86.6 90.6 93.5 93.37 63.1 13.4 43.8 41.9 66.4 53.2 57.0 48.40 44.2

MGP-STR* [45] ECCV 2022 ViT-B 96.4 94.7 97.3 87.2 91.0 90.3 92.82 55.2 14.0 52.8 48.5 65.2 48.8 59.1 49.09 148
LevOCR* [9] ECCV 2022 ResNet+TF3 96.6 94.4 96.7 86.5 88.8 90.6 92.27 52.8 10.7 44.8 51.9 61.3 54.0 58.1 47.66 109

CornerTF* [51] ECCV 2022 CornerEncoder 95.9 94.6 97.8 86.5 91.5 92.0 93.05 62.9 18.6 56.1 58.5 68.6 59.7 61.0 55.07 86.0
SIGA* [18] CVPR 2023 ViT-B 96.6 95.1 97.8 86.6 90.5 93.1 93.28 59.9 22.3 49.0 50.8 66.4 58.4 56.2 51.85 113
CCD* [19] ICCV 2023 ViT-B 97.2 94.4 97.0 87.6 91.8 93.3 93.55 66.6 24.2 63.9 64.8 74.8 62.4 64.0 60.10 52.0

LISTER* [8] ICCV 2023 FocalNet-B 96.9 93.8 97.9 87.5 89.6 90.6 92.72 56.5 17.2 52.8 63.5 63.2 59.6 65.4 54.05 49.9
LPV-B* [58] IJCAI 2023 SVTR-B 97.3 94.6 97.6 87.5 90.9 94.8 93.78 68.3 21.0 59.6 65.1 76.2 63.6 62.0 59.40 35.1

CDistNet* [65] IJCV 2024 ResNet+TF3 96.4 93.5 97.4 86.0 88.7 93.4 92.57 69.3 24.4 49.8 55.6 72.8 64.3 58.5 56.38 65.5
CAM* [54] PR 2024 ConvNeXtV2-B 97.4 96.1 97.2 87.8 90.6 92.4 93.58 63.1 19.4 55.4 58.5 72.7 51.4 57.4 53.99 135

BUSNet [49] AAAI 2024 ViT-S 96.2 95.5 98.3 87.2 91.8 91.3 93.38 - - - - - - - - 56.8
DCTC [60] AAAI 2024 SVTR-L 96.9 93.7 97.4 87.3 88.5 92.3 92.68 - - - - - - - - 40.8

OTE [52] CVPR 2024 SVTR-B 96.4 95.5 97.4 87.2 89.6 92.4 93.08 - - - - - - - - 25.2
CPPD [13] TPAMI 2025 SVTR-B 97.6 95.5 98.2 87.9 90.9 92.7 93.80 65.5 18.6 56.0 61.9 71.0 57.5 65.8 56.63 26.8

IGTR-AR [14] TPAMI 2025 SVTR-B 98.2 95.7 98.6 88.4 92.4 95.5 94.78 78.4 31.9 61.3 66.5 80.2 69.3 67.9 65.07 24.1
SMTR [12] AAAI 2025 FocalSVTR 97.4 94.9 97.4 88.4 89.9 96.2 94.02 74.2 30.6 58.5 67.6 79.6 75.1 67.9 64.79 15.8

CRNN [39] TPAMI2016 ResNet+LSTM 82.9 81.6 91.1 69.4 70.0 65.5 76.75 7.50 0.90 20.7 25.6 13.9 25.6 32.0 18.03 8.30
SVTR* [11] IJCAI2022 SVTR-B 96.0 91.5 97.1 85.2 89.9 91.7 91.90 69.8 37.7 47.9 61.4 66.8 44.8 61.0 55.63 24.6

SVTRv2 - SVTRv2-B 97.7 94.0 97.3 88.1 91.2 95.8 94.02 74.6 25.2 57.6 69.7 77.9 68.0 66.9 62.83 19.8

Table 10. Results of SVTRv2 and existing models when trained on synthetic datasets (ST + MJ) [20, 24]. * represents that the results on
U14M are evaluated using the model they released.

Blurred Artistic Incomplete Other Total Labelerr

IIIT5k [33] 0 16 1 4 21 4
SVT [44] 4 4 4 0 12 0

ICDAR 2013 [27] 2 2 4 2 10 2
ICDAR 2015 [26] 48 19 42 13 122 35

SVTP [35] 7 6 12 7 32 4
CUTE80 [1] 0 1 0 0 1 1

Total 61 48 63 26 198 46
30.81% 24.24% 31.82% 13.13% 100%

Table 11. Distribution of bad cases for SVTRv2 on Com.

strategies. This rigorous optimization led to significant ac-
curacy improvements of 5–10% for most models compared
to their default configurations. For instance, MAERec’s ac-
curacy increased from 78.6% to 85.2%, demonstrating the
effectiveness of training settings. These improvements un-
derscore the reliability of our results and highlight the im-
portance of carefully optimizing hyperparameters for mean-
ingful model comparisons.



Setting Detail

Training Set For training, when the text length of a text image exceeds 25, samples
with text length ≤ 25 are randomly selected from the training set to
ensure models are only exposed to short texts (length ≤ 25).

Test Sets For all test sets except the long-text test set (LTB), text images with text
length > 25 are filtered. Text length is calculated by removing spaces
and non-94-character-set special characters.

Input Size Unless a method explicitly requires a dynamic size, models use a fixed
input size of 32 × 128. If a model performs incorrectly with 32 × 128
during training, the original size is used. The test input size matches the
training size.

Data Augmentation All models use the data augmentation strategy employed by PARSeq.

Training Epochs Unless pre-training is required, all models are trained for 20 epochs.

Optimizer AdamW is the default optimizer. If training fails to converge with
AdamW, Adam or other optimizers are used.

Batch Size Maximum batch size for all models is 1024. If single-GPU training is
not feasible, 2 GPUs (512 per GPU) or 4 GPUs (256 per GPU) are used.
If 4-GPU training runs out of memory, the batch size is halved, and the
learning rate is adjusted accordingly.

Learning Rate Default learning rate for batch size 1024 is 0.00065. The learning rate
is adjusted multiple times to achieve the best results.

Learning Rate Scheduler A linear warm-up for 1.5 epochs is followed by a OneCycle scheduler.

Weight Decay Default weight decay is 0.05. NormLayer and Bias parameters have a
weight decay of 0.

EMA or Similar Tricks No EMA or similar tricks are used for any model.

Evaluation Protocols Word accuracy is evaluated after filtering special characters and con-
verting all text to lowercase.

Table 12. A uniform training and evaluation setting to maintain consistency across all settings while simultaneously enabling each model
to achieve its best possible accuracy.



Figure 7. The bad cases of SVTRv2 in IIIT5k [33], SVT [44], ICDAR 2013 [27], SVTP [35] and CUTE80 [1]. Labels, the predicted result,
and the predicted score are denoted as Textlabel | Textpred | Scorepred. Yellow, red, blue, and green boxes indicate blurred, artistic fonts,
incomplete text, and label-inconsistent samples, respectively. Other samples have no box.



Figure 8. The bad cases of SVTRv2 in ICDAR 2015 [26]. Labels, the predicted result, and the predicted score are denoted as Textlabel |
Textpred | Scorepred. Yellow, red, blue, and green boxes indicate blurred, artistic fonts, incomplete text, and label-inconsistent samples,
respectively. Other samples have no box.
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