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Our supplementary material gives more details about our method and more experimental results, which can be summarized
as follows.
• We provide more related work in Section 1.
• We provide the implementation details in Section 2.
• We provide the detailed comparison with SD3-ControlNet in Section 3.
• We provide the details of ablation study in Section 4.
• We provide the details of user study in Section 5.
• We provide the PSNR and SSIM performance of our DiT4SR in Section 6.
• We provide the complexity comparison between our DiT4SR and other methods in Section 7.
• We provide the limitation of our DiT4SR and our future work in Section 8.
• We provide more qualitative comparisons in Section 9.

1. Related Work
Diffusion Transformer To enhance the generative capability of diffusion models, large-scale transformer architectures have
been introduced, where diffusion transformer (DiT) [11] stands out. Building on DiT, large-scale T2I models, e.g. PixArt-α
[5], SD3 [6], and Flux [2], are proposed. Specifically, SD3 and Flux leverage Multimodal Diffusion Transformers (MM-
DiTs) to integrate text and image modalities through attention operation. In this way, the two modalities can fully interact,
forming the core advantage of DiT. Our DiT4SR further enhances this advantage by incorporating the LR stream into the
DiT blocks, enabling sufficient interaction between LR information and original features within the DiT blocks.

2. Implementation Details
Our DiT4SR is built upon Stable Diffusion 3.5, which shares a similar architecture with Stable Diffusion 3 [6]. We initialize
the model parameters from SD3.5-Medium, and follow all the hyperparameter settings of SD3.5. Specifically, the total
number N of the MM-DiT-Control blocks is 24. When the target resolution is set to 512 × 512, the height H , the width
W , and the channel C of the noisy latent Z ∈ RH×W×C are 64, 64, and 16. Thus the length K and the dimension D
of noisy image token X ∈ RK×D and the LR image token L ∈ RK×D are 1024 and 1536. The length M of the text
token C ∈ RM×D is set to 154. The training process is conducted on 512 × 512 resolution images with 8 NVIDIA 80G-
A100GPUs. We train our model with a constant learning rate of 5e−5 with a batch size of 64. During inference, we adopt the
default sampling schedule of SD3.5 with 40 sampling steps (T ). The scale of classifier-free guidance (CFG) is set to 8 in our
experiments. Following [1, 17], the prompt of the input LR image is obtained from LLaVA [9]. All the evaluation metrics
are implemented by PyIQA [4]. Note that the metric of ‘ClipIQA’ is implemented with the setting of ‘clipiqa+ vitL14 512’
provided by PyIQA.

*This project is done during the internship at SenseTime Research.
†Corresponding author.
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(a) SD3-ControlNet (b) DiT4SR

Figure 1. Detailed architecture comparison between SD3-ControlNet and our proposed DiT4SR. (a) SD3-ControlNet processes the LR
Stream in additional MM-DiT blocks and injects LR information into the Noise Stream via trainable linear layers, establishing a one-way
information flow. (b) Our DiT4SR directly integrates the LR Stream into the original DiT blocks, enabling bidirectional information flow
through LR Integration in Attention. Additionally, LR Injection Between MLP incorporates convolutional layers to enhance local
feature extraction, improving restoration fidelity.

3. Detailed Comparison with SD3-ControlNet
Figure 1 provides more detailed architecture comparison between SD3-ControlNet and our proposed DiT4SR. As illustrated
in Figure 1, SD3-ControlNet processes the LR latent in additional MM-DiT blocks before being injected into the Noise
Stream via trainable linear layers. This design establishes a one-way information flow from the LR Stream to the Noise
Stream, limiting the information interaction between the two streams. The limited information interaction in SD3-ControlNet
prevents the LR Stream from continuously adapting to the evolving state of the Noise Stream, hindering its ability to generate
well-aligned guidance. This constraint potentially results in suboptimal guidance, affecting the quality of image restoration.

In contrast, our DiT4SR directly integrates the LR Stream into the original DiT blocks, allowing bidirectional information
flow between the LR and Noise Streams. Specifically, we introduce LR Integration in Attention, where LR information
is integrated directly into the attention computation, enabling continuous feature fusion in each block. Additionally, LR
Residual is introduced to enhance the consistency of LR guidance throughout deeper transformer layers, mitigating the
issue of diminishing influence. Furthermore, LR Injection Beyond MLP is incorporated through the convolutional layer to
enhance local feature extraction, compensating for the weaker spatial capturing capability of DiT. By allowing the LR and
Noisy Streams to evolve together, DiT4SR ensures that the LR guidance is progressively refined throughout the diffusion
process, leading to more stable and high-fidelity restoration results compared to SD3-ControlNet.

We further visualize the LR Stream features at different depths for both SD3-ControlNet and our proposed DiT4SR.
Following [10], the LR features of SD3-ControlNet is visualized with PCA in Figure 2 (b), and LR features of DiT4SR is
in Figure 2 (d). In SD3-ControlNet, the LR features present unclear details and low edge distinction. This suggests that
the one-way LR injection does not effectively preserve fine structures, resulting in weak guidance for the diffusion process.
Consequently, as shown in Figure 2 (c), the restored image lacks sharpness, with indistinct edges and structural distortions.
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Figure 2. Comparison of LR feature evolution and final restoration results between SD3-ControlNet and our proposed DiT4SR. (a) The
input low-resolution (LR) image. (b) and (d) are LR Stream features extracted from different depths of SD3-ControlNet and DiT4SR,
which are visualized with PCA [10]. (c) and (e) are results of SD3-ControlNet and DiT4SR.

In contrast, our DiT4SR maintains clearer edge and less degradation across deeper layers (Figure 2 (d)), ensuring that
fine-grained structures remain well-defined. This is enabled by our bidirectional information interaction, allowing the LR
Stream to continuously refine itself based on the evolving Noise Stream. As a result, the final restoration (Figure 2 (e))
exhibits sharper edges and more distinct textures.

4. Details of Ablation Study
In Figure 3, we provide the detailed architectures of the four variants and the full model in the ablation study.
Variant A. Variant A removes the LR Stream from the attention operation. Instead, the LR Stream calculates the attention
via self-attention mechanism, which can be formulated as

Attention(PL
Q(L), PL

K(L), PL
V(L)) = softmax(

PL
Q(L)PL

K(L)
T

√
d

)︸ ︷︷ ︸
attention map

PL
V(L), (1)

where PL
Q, PL

K, and PL
V are trainable linear projections for LR image token L. The LR Residual and LR Injection between

MLP are preserved.
Variant B. Variant B removes the LR Residual, preventing the LR Stream from maintaining a direct pathway across deeper
layers. LR Integration in Attention and LR Injection between MLP are preserved.
Variant C. Variant C removes the LR Injection between MLP, meaning LR information is only integrated into the model via
attention mechanism. LR Integration in Attention and LR Residual are preserved.
Variant D. Variant D replaces the 3 × 3 depth-wise convolution in LR Injection between MLP with a linear layer. LR
Integration in Attention and LR Residual are preserved.
Full Model. The full model retains all three components: LR Integration in Attention, LR Residual, and LR Injection between
MLP, ensuring bidirectional information exchange and a comprehensive interaction between the LR and Noise Streams. This
configuration allows the LR Stream to evolve alongside the Noise Stream, facilitating adaptive and consistent guidance
throughout the diffusion process. Meanwhile, the 3 × 3 depth-wise convolution layer in LR Injection also compensates for
the limited local information-capturing ability of DiT.

5. Details of User Study
Figure 4 presents an example of our user study. In the user study, volunteers are provided with two restoration results, where
one is from our method, and the other is from the compared methods. The volunteers are asked the following questions:
1) Which restoration result has higher image realism? 2) Which restoration result has better fidelity to the original image
content?
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Figure 3. Variant A (a), B (b), and C (c) remove the LR Integration in Attention, LR Residual, and LR Injection between MLP, respectively.
Variant D (d) replaces the convolution layer with the linear layer in LR Injection. (e) is the full model of our DiT4SR.



User Study

Figure 4. One comparison example in the user study. In each comparison, the volunteers are asked the following questions: 1) Which
restoration result has higher image realism? 2) Which restoration result has better fidelity to the original image content?



6. PSNR and SSIM Performance

Datasets Metrics
Real-

ESRGAN
SwinIR ResShift StableSR SeeSR DiffBIR OSEDiff SUPIR DreamClear

SD3-
ControlNet

DiT4SR

PSNR ↑ 28.615 28.497 28.692 28.407 28.074 25.929 27.915 24.988 28.394 27.205 25.806
DrealSR

SSIM ↑ 0.805 0.804 0.787 0.795 0.768 0.652 0.783 0.647 0.745 0.734 0.682

PSNR ↑ 25.686 26.308 26.387 23.437 25.188 24.240 25.148 23.679 24.847 24.004 23.378
RealSR

SSIM ↑ 0.761 0.773 0.756 0.692 0.722 0.665 0.734 0.664 0.699 0.685 0.664

Table 1. PSNR and SSIM performance of state-of-the-art Real-ISR methods on two real-world benchmarks. Best and second best perfor-
mance are highlighted in red and blue, respectively.

(a) Bicubic Input (b) SeeSR

PSNR: 
24.39
SSIM: 
0.700

(c) DiT4SR

PSNR: 
22.79 
SSIM: 
0.660

Figure 5. (a) LR input. (b) SeeSR produces higher PSNR (24.39) and SSIM (0.700) but exhibits over-smoothed textures and lacks fine-
grained details. (c) Our DiT4SR achieves lower PSNR (22.79) and SSIM (0.660) but reconstructs richer details and sharper textures,
demonstrating improved perceptual quality despite lower full-reference metrics.

In Table 1, we report the PSNR and SSIM performance of state-of-the-art Real-ISR methods on two real-world bench-
marks, including our DiT4SR. Although our DiT4SR can generate richer details and achieve better visual effects, DiT4SR
shows no advantage on these full-reference metrics (PSNR and SSIM), which is further demonstrated by Figure 5. This
can be attributed to the limitations of these full-reference metrics, which is also mentioned in previous studies [3, 7, 17].
Therefore, we argue that comparing PSNR and SSIM performance across different methods is not particularly meaningful
for the Real-ISR task.

7. Parameters and Inference Time

Methods Base Model Params Sample Steps Inference Time

ResShift Diffusion 16.7M 15 0.79s
StableSR SD2 1409.1M 200 13.18s

SeeSR SD2 2283.7M 50 5.14s
DiffBIR SD2 1716.7M 50 4.12s
SUPIR SDXL 4801.2M 50 11.85s

SD3-ControlNet SD3.5-Medium 3504.4M 40 4.35s
DiT4SR SD3.5-Medium 2716.8M 40 5.61s

Table 2. Complexity comparison between different methods. All evaluations are conducted on an NVIDIA 80G-A100 GPU, where each
method generates 512×512 results from 128×128 inputs.

Table 2 presents a comparison of different methods in terms of model parameters, sampling steps, and inference time. All
evaluations are conducted on an NVIDIA 80G-A100 GPU, where each method generates 512×512 results from 128×128
inputs.



ResShift [18], utilizing a lightweight diffusion-based model, has the lowest computational cost, requiring only 0.79s per
inference with 15 sampling steps. StableSR [14] is significantly more computationally expensive, requiring 200 sampling
steps and 13.18s for inference. SeeSR [15] and DiffBIR [8] employ 50 sampling steps, with DiffBIR achieving a slightly
faster inference time. SUPIR [17], leveraging SDXL [12], has the largest model size (4801.2M params) and requires 11.85s
per inference, reflecting the increased computational demand of scaling to SDXL. Both SD3-ControlNet [13, 19] and our
DiT4SR are built upon SD3.5-Medium [6]. They both adopt 40 sampling steps, with DiT4SR having fewer parameters but a
slightly higher inference time.

8. Limitation and Future Work
Like most diffusion-based Real-ISR methods [1, 15–17], our DiT4SR also requires a detailed prompt describing the image
content as input. During inference, some approaches, such as SUPIR [17] and DreamClear [1], first pass the LR image
through a degradation removal model before using LLAMA to generate the prompt. However, we observe that degradation
removal may erase or alter the original information in the LR image, leading to hallucinated content in the generated prompt,
such as “snow-covered trees” and “black and white style” in Figure 6 (b).

In our work, we choose to use the LR image as input to LLAMA directly, preserving more of the original content.
Although this approach can somewhat reduce hallucinations in certain cases, it still cannot guarantee the generation of
entirely accurate prompts, which is shown in Figure 6 (d). In Figure 6 (f) and (h), both SUPIR and DiT4SR hallucinate an
airplane in the background, resulting in restoration errors that deviate from the ground truth. Therefore, this highlights the
challenge of accurately extracting prompts from LR images, which remains an open research problem. We leave this as our
future research direction.

9. More Qualitative Comparisons
Figure 7, Figure 8, Figure 9, and Figure 10 provide more qualitative comparisons on four datasets (DrealSR, RealSR, Re-
alLQ250, RealLR200). Our method is capable of generating results with richer details than the compared methods while
simultaneously maintaining high fidelity.



SUPIR Prompt:
The image features a bird flying over a body of water, 
possibly an ocean, with a mountainous background. The 
bird is captured in mid-flight, soaring gracefully through 
the sky. The scene is depicted in a black and white style, 
giving it a timeless and artistic quality.  In addition to the 
bird, there is a small airplane flying in the sky, adding 
another element of interest to the scene. The combination 
of the bird, the ocean, and the mountainous landscape 
creates a serene and picturesque atmosphere.

DiT4SR Prompt:
The image features a large bird flying over a body of water, 
possibly a lake or a bay. The bird is soaring high in the sky, 
with its wings spread wide. The water below is calm, and 
the scene is serene.  In the background, there is a small 
airplane flying at a higher altitude, adding an interesting 
contrast to the bird's flight. The airplane is positioned 
towards the left side of the image, while the bird is flying 
towards the right side.

SUPIR Prompt:
The image features a snow-covered tree with a group of 
people walking underneath it. The tree is surrounded by 
several other trees, creating a picturesque winter scene. 
The people are walking in a line, with some closer to the 
tree and others further away.  The image is a black and 
white photograph, which adds a timeless and classic feel to 
the scene. The snow-covered trees and the people walking 
underneath them create a sense of tranquility and beauty, 
capturing the essence of a winter day.

DiT4SR Prompt:
The image features a tree-lined street with a row of trees on 
both sides. The trees are covered in white flowers, creating 
a beautiful and serene atmosphere. A group of people are 
walking underneath the trees. The street is lined with 
buildings, and there are several windows visible on the 
buildings. The overall scene is picturesque and inviting.

(a) Bicubic Input (b) SUPIR

(c) Ground Truth (d) DiT4SR

(e) Bicubic Input (f) SUPIR

(g) Ground Truth (h) DiT4SR

Figure 6. (a) and (e) show the bicubic input LR images. (c) and (g) show the ground truth images. (b) and (f) present the outputs from
SUPIR, where prompts generated using LLAMA after degradation removal introduce hallucinated contents, such as “snow-covered trees”,
“black and white style” and “airplane in the background”. These inaccuracies lead to incorrect image restoration. (d) and (h) display
the outputs from DiT4SR, where prompts are generated directly from the LR input without degradation removal, somewhat reducing
hallucinations but still suffering from incorrect contents (e.g., the hallucinated people and airplane). The hallucinated contents in prompts
are marked in red.
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Figure 7. More qualitative comparisons with state-of-the-art Real-ISR methods on DrealSR (the first two rows) and RealSR (the last three
rows). Our DiT4SR achieves the best performance in terms of image realism and detail generation while maintaining fidelity to the input
LR image.
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Figure 8. More qualitative comparisons with state-of-the-art Real-ISR methods on RealLQ250 (the first two rows) and RealLR200 (the
last three rows). Our DiT4SR achieves the best performance in terms of image realism and detail generation while maintaining fidelity to
the input LR image.
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Figure 9. More qualitative comparisons with state-of-the-art Real-ISR methods on RealLQ250 (the first two rows) and RealLR200 (the
last three rows). Our DiT4SR achieves the best performance in terms of image realism and detail generation while maintaining fidelity to
the input LR image.
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Figure 10. More qualitative comparisons with state-of-the-art Real-ISR methods on RealLQ250 (the first two rows) and RealLR200 (the
last three rows). Our DiT4SR achieves the best performance in terms of image realism and detail generation while maintaining fidelity to
the input LR image.
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