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Supplementary Material

A. More Implementation Details

A.1. Exemplar Management
We follow the exemplar management strategy of iCaRL [9].
Whenever the new classes are encountered, we adjust the
exemplar set. All classes are treated equally, meaning that
when k classes have been observed so far and M is the total
number of storable samples, mt = ⌈M/k⌉ samples are al-
located for each class at the t-th task. This ensures that the
memory budget of M samples is always fully utilized but
never exceeded.

Two routines are responsible for sample management:
one for selecting samples for new classes and the other for
reducing the size of the exemplar sets for previously classes.
Algorithm 1 outlines the sample selection process. Exem-
plars e1, . . . , em are selected and stored iteratively until the
target number m is reached. At each iteration, a sample
from the current training set is added to the exemplar set.
The sample is chosen such that its feature vector brings
the average feature vector of the exemplars closest to the
average feature vector of the training samples. As a re-
sult, the exemplar “set” is effectively a priority-ordered list,
where the order of elements matters, and exemplars earlier
in the list are more significant. The procedure for removing
samples is specified in Algorithm 2, and it is particularly
straightforward: to reduce the number of samples from any
m′ to m, simply discard the samples em+1, . . . , em′ , retain-
ing only the exemplars e1, . . . , em.

A.2. Implementation Details For CUB
For CUB [3], we follow the experimental setup and train-
ing pipeline of UaD-CIE [4]. We use a base learning rate
of 0.001 during the first task, which is divided by 10 after
80 and 120 epochs (out of a total of 160 epochs). For sub-
sequent tasks, the learning rate is set to 0.0005, with a total
of 60 supervised epochs. The training batch size is set to
32, and the testing batch size is set to 50. We use a memory
buffer of size 2000, managed in accordance with iCaRL [9].
All loss weights λuns, λcl, λfsr, and λcud are set to 1.0, and
temperature parameters β, γ, and ξ are set to 0.1.

A.3. Building USP Based on DER
DER [11] preserves the old network by parameter consol-
idation. At each incremental step, DER freezes previously
learned representations and enhances them by adding new
feature extractors, which introduce additional feature di-
mensions to the old representations. Additionally, DER in-
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Algorithm 2: Reducing Exemplar Set
Input: Target number of exemplars mt, exemplar

set Et−1,(i) for class i
Output: Exemplar set Et,(i) for class i
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troduces an auxiliary classifier A(·) to encourage the model
to learn diverse and distinguishable features of new con-
cepts. When constructing the USP based on DER, we
follow DER’s dynamic network expansion during training
while replacing Lcl with DER’s corresponding training loss
while keeping all other loss terms unchanged. Specifically,
Lcl is modified as:

Lcl(D
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[
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l
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]
+ LS(F
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where, p̄txt

l
= At(F t(xt

l)) represents the prediction output
of the auxiliary classifier At(·) introduced by DER. At(·)
is a (|Yt| + 1)-way classifier that treats all samples in the
exemplar set Et as a single category. ȳtl represents the label,
where ȳtl = ytl for xt

l ∈ Dt and ȳtl = |Yt|+ 1 for xt
l ∈ Et.

LS(F
t) is the regularization loss computed based on the

parameters of F t to prevent excessive model complexity.
For detailed calculations, please refer to [11].

A.4. Neural Collapse and Equiangular Tight Frame
Neural collapse refers to the phenomenon occurring at the
late stage of training on balanced data (after the training er-
ror rate reaches 0). It reveals the geometric structure formed



Table 1. Performance comparisons on a 20-task continual learning benchmark under different data availability settings on ImageNet-100.
We report both the original results of NNCSL [6] and the results of our own re-run (denoted as ∗). In the original paper of NNCSL [6],
only the last accuracy is reported, without the average and task-level accuracy.

Labels Method Task ID Avg
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1%

NNCSL - - - - - - - - - - - - - - - - - - - 29.70 -
NNCSL∗ 59.50 50.20 39.71 43.50 38.58 34.13 32.88 29.50 30.59 29.84 27.93 30.53 31.09 30.37 30.22 29.70 29.62 29.36 28.79 28.98 34.25

iCaRL&Fix+USP 64.80 50.80 52.93 49.50 44.80 39.67 34.97 34.55 32.49 31.48 29.27 33.13 33.48 34.57 34.05 33.12 32.87 31.29 30.40 28.64 37.84
DER&Fix+USP 64.40 55.00 53.33 51.10 47.12 43.13 41.60 41.00 38.58 37.08 35.64 38.10 37.78 36.91 36.53 34.20 33.48 33.09 33.64 32.78 40.00

5%

NNCSL - - - - - - - - - - - - - - - - - - - 51.30 -
NNCSL∗ 58.00 55.60 45.43 48.80 27.93 39.53 39.53 39.53 37.59 40.04 39.52 42.13 42.31 43.51 43.16 41.73 39.40 41.69 42.43 43.26 42.56

iCaRL&Fix+USP 73.60 62.40 68.00 66.00 61.52 56.93 54.80 52.55 51.11 51.84 50.04 52.23 51.85 52.11 52.40 50.85 49.81 49.16 49.05 48.46 54.56
DER&Fix+USP 76.00 74.80 72.00 72.00 63.68 60.20 58.63 57.10 54.93 53.12 53.20 55.20 55.17 55.63 55.89 54.70 53.58 53.53 53.37 53.62 59.32

25%

NNCSL - - - - - - - - - - - - - - - - - - - 65.60 -
NNCSL∗ 60.00 60.00 51.43 54.30 48.17 43.40 42.12 41.90 44.05 44.44 42.33 44.033 45.53 46.14 45.78 46.24 43.53 41.48 41.67 44.12 46.53

iCaRL&Fix+USP 78.00 77.00 79.73 78.50 71.60 68.00 65.09 63.00 60.13 58.12 57.83 58.97 59.82 58.17 59.07 55.60 55.48 54.49 53.77 53.78 63.31
DER&Fix+USP 80.40 76.60 79.87 79.20 71.76 66.67 64.57 60.80 58.18 56.40 55.89 58.70 57.66 58.57 55.39 53.42 51.04 54.69 56.82 55.54 62.61

by the final layer features and the classifier, which can be
defined as a simplex Equiangular Tight Frame (ETF), which
refers to a matrix composed of K vectors in Rd, satisfying:
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where δk1,k2
= 1 when k1 = k2, and 0 otherwise. All

vectors have the same L2−normalization and any pair of
two different vectors has the same inner product of − 1

K−1 ,
which is the minimum possible cosine similarity for K
equiangular vectors in Rd.

In our method, we use an simplex equiangular tight
frame as the pre-defined class prototype features, with the
sample features of each class aligned to it. More details
about the neural collapse phenomenon can be found in [12].

B. Additional Experimental Results
Unless otherwise specified, DSGD [5] and USP both adopt
iCaRL&FixMatch [5] as the base SSCL learner.

B.1. More SSCL Protocols
B.1.1. NNCSL Protocol
To ensure a comprehensive comparison with recent work,
we conduct additional experiments to evaluate our method,
USP, against NNCSL [6]. The original NNCSL protocol
utilizes a different 20-task setting on ImageNet-100, which
is distinct from our primary 10-task setup. To provide a
fair comparison, we evaluate USP under NNCSL protocols.
The results are presented in Tab. 1. The experiments show
that USP consistently outperforms NNCSL across all set-
tings, demonstrating the superior effectiveness and robust-
ness of our approach.

Table 2. Average and last accuracy on 5-task CIFAR10-30 with
two more realistic SSCL settings.

Method Imbalanced Inconsistent
Avg Last Avg Last

DSGD 62.42 62.96 57.58 59.92
USP 75.18 65.50 70.26 60.39

Table 3. Ablation experiments on whether uses low-confidence
samples (“LCS”) on 5-task CIFAR10-30.

Avg Last

wo. LCS 68.34 61.01
w. LCS 81.43 73.65

B.1.2. SSCL with Non-IID Distributions
We consider two more realistic SSCL scenarios: (1) training
with a long-tailed class distribution for each task (“imbal-
anced”); (2) training with various data amounts across tasks
(“inconsistent”). Specifically, we conduct experiments on
the 5-task CIFAR10-30. In the imbalanced setting, we set
the number of labeled and unlabeled data for each class in
each task to {30, 150} and {600, 3000}. In the inconsistent
setting, we set the training data sizes for the five tasks to
{10000 → 250 → 125 → 5000 → 625}. The results are
shown in Tab. 2. As can be seen, our method demonstrates
stronger robustness, with performance clearly outperform-
ing the previous SOTA SSCL method.

B.2. More Ablation Studies
B.2.1. Utilization of Low-Confidence Unlabeled Data
To present the contribution of DCP, we conduct the follow-
ing ablation experiments on using the low-confidence un-
labeled data: traditional classifier with thresholded pseudo-
labeling v.s. our proposed DCP, which is shown in Tab. 3.
This comparison demonstrates that reasonably learning
from low-confidence samples, rather than simply discard-
ing them to avoid potential errors, can indeed lead to tangi-
ble performance improvements.



Table 4. Ablation studies on different distillations on 10-task
CIFAR100-25.

Method Avg Last

logit 53.91 37.97
feature 48.16 33.56

CUD 54.36 38.25

Table 5. Ablation studies on loss weights of Lfsr on 5-task
CIFAR10-30.

λl
fsr λu

fsr Avg Last

1.0 0.5 79.52 70.21
1.0 1.0 81.63 73.65
0.5 1.0 78.38 68.78

B.2.2. More Distillation Methods
We explore the use of existing distillation methods for dis-
tilling from unlabeled data, specifically logit distillation and
feature distillation. In particular, we apply consistency reg-
ularization directly on the logits or features output by the
models of the current task and the previous task for unla-
beled data. These experiments are compared with our pro-
posed CUD, which are shown in Tab. 4. It is evident that
our CUD outperforms both logit and feature distillation.

B.2.3. Hyper-parameters
Confidence Threshold and Feature Dimension. We con-
duct ablation studies on the confidence threshold τ and the
feature dimension d. As Fig. 1 Shown, USP achieves the
best performance with appropriately tuned default values.
The threshold τ is set following standard practice in semi-
supervised learning methods (e.g., FixMatch [10]), and the
method demonstrates low sensitivity to variations in d.
Loss Weights. In our paper, the Lfsr sums the labeled and
unlabeled parts with the same weight. We further apply dif-
ferent loss weights to labeled and unlabeled data to inves-
tigate their impact on the performance of the method. We
denote the loss weight for unlabeled data as λu

fsr and for la-
beled data as λl

fsr, and conduct the corresponding ablation
experiments. The experimental results are shown in Tab. 5.
The performance is best when the loss weights for labeled
and unlabeled data are equal. Increasing or decreasing the
relative weight of the unlabeled data leads to a performance
drop, indicating that the pseudo-labels obtained through our
divide-and-conquer labeling have high quality.

B.2.4. More Backbones and Pre-Training Strategies
In the main text, we follow the experimental setup of DSGD
[5] and primarily use ResNet-32 and ResNet-18 without
pre-training as the backbones for our method. To fur-
ther investigate the impact of different backbones and pre-
training strategies on the performance of our method, we
use iCaRL&Fix as the base SSCL learners and conduct
ablation experiments. The experimental results are shown
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Figure 1. Average accuracy with various confidence thresholds
and feature dimensions on 5-task CIFAR10-30.

Table 6. Ablation studies on different backbone architectures
on the 5-task CIFAR10-30. Meanwhile, we adopt different pre-
training strategies (CLIP [8] and DINO [2]) on ResNet-50 to show
the performance potential of our method.

Backbone ResNet20 ResNet32 ResNet50 CLIP DINO
Avg Last Avg Last Avg Last Avg Last Avg Last

DSGD 72.63 69.43 77.33 76.41 73.81 65.01 72.43 72.02 77.29 70.41
USP 80.00 69.59 79.66 70.43 75.17 67.24 80.88 74.08 78.86 71.35

in Tab. 6. We observe that using properly sized networks
with appropriate pre-training leads to better USP perfor-
mance. Simply using larger networks or advanced pre-
training without proper adaptation does not guarantee im-
proved SSCL performance (as found in [7]). Making USP
more compatible with larger networks and diverse pre-
training approaches remains our future work.

B.3. Discussions on Memory Buffer Size
By default, we follow the setup of iCaRL [9] and use a
buffer size of 5120 to store a portion of the labeled data
from each task as the exemplar set. To further investigate
the impact of buffer size, we conduct additional ablation ex-
periments, with the results presented in Tab. 7. As shown, a
buffer size of 5120, which is the typical choice for most
replay-based methods [1, 6, 9], achieves the best perfor-
mance. Using a fixed-size exemplar buffer is a standard
practice in continual learning [5, 6, 9], as it reflects realistic
memory constraints and enables fair comparisons with ex-
isting SSCL methods. While labeled data are indeed scarce
in SSCL, the memory budget may still be insufficient to re-
tain all labeled samples—particularly in settings with long
task sequences (i.e., task ID → ∞) or high supervision lev-
els (e.g., CIFAR100-125 or ImageNet100-100, where the
number of labeled samples reaches 12.5K and 10K, respec-
tively, far exceeding the our default memory buffer size of
5120). In such scenarios, USP adopts an iCaRL-style exem-
plar buffer to strike a balance between memory efficiency
and model performance.

Although USP is designed under the realistic assumption
of limited memory, our three key components—FSR, DCP,
and CUD—are orthogonal to buffer size and remain effec-
tive even under larger or unlimited memory settings. No-
tably, DCP and CUD can also effectively leverage the unla-
beled sample pool to address distribution shifts across tasks.



Table 7. Ablation studies on memory buffer size of exemplar set
Et on 5-task CIFAR10-30.

Buffer Size CIFAR10-30 CIFAR10-150
Avg Last Avg Last

250 71.66 59.93 79.25 66.76
500 73.21 61.75 80.71 72.48

5120 79.66 70.43 84.78 78.21

Table 8. Comparisons with CL-based baselines (combine Fix-
Match [10] to exploit unlabeled data) using a larger buffer size
20K, which is enough to retain all labeled samples.

Method CIFAR100-125 ImageNet100-100
Avg Last Avg Last

iCaRL&Fix (20K) 62.07 46.56 40.40 26.91
+ USP (20K) 68.65 55.17 56.91 51.73

DER&Fix (20K) 68.75 54.83 62.02 53.46
+ USP (20K) 70.60 61.33 62.17 58.34

To further verify the performance of USP under idealized
conditions where the buffer is sufficiently large to retain
all labeled samples, we conduct additional experiments on
CIFAR100-125 and ImageNet100-100 with a buffer size of
20K. As shown in Tab. 8, USP continues to achieve strong
performance in this setting, demonstrating the robustness
and generality of our approach.
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