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Supplementary Material

A. Additional Details on World Specification

We provide additional details on world specification pre-
processing wproc in Eq. 1. We evaluate models across 3D
scene generation, 4D scene generation, and video genera-
tion, each with distinct input requirements. For instance,
3D/4D scene generation models [90, 91] accept precise cam-
era poses as input, whereas video generation models do not.
Also, among these models, some are T2V models [14, 41],
which rely solely on text-based control, while others are
I2V models [20, 58, 86, 90, 91], which accept image control
signals. To accommodate these variations, wproc ensures that
each model receives inputs in its appropriate format.

Specifically, wproc standardizes the inputs as follows:

• Reference image I: The image for current scene C is
center-cropped and resized to match the resolution re-
quired by each model (see Table S1 for the specific reso-
lutions). This serves as both a visual style reference and
a necessary input for I2V models. Notably, T2V models
are treated as I2V models that ignore image-based control
signals.

• Layout L: The world specification module generates a
predefined precise camera trajectory T (which serve as
ground truth for camera controllability) and corresponding
textual descriptions Y (e.g., “camera moves left”) as world
layout L. wproc gives models that accept explicit camera
control signals the transformed camera poses T ′, ensuring
alignment across different camera types, while models
without explicit camera control receive textual descriptions
Y instead.

• Next-scene prompt N : For 3D/4D models which all
accept camera matrices as input, wproc does not adapt the
prompt N . For video models that do not accept camera
matrices as input, wproc processes the next-scene prompt
N by adding camera movement text to it.

B. Additional Details on Dataset Curation

B.1. Image Filtering
To construct a high-quality and diverse image dataset as our
starting current scene images, we source from both existing
datasets and supplement them with Unsplash [7]. Existing
scene datasets [8, 38, 57, 62, 67, 69, 74, 98] (Table S2) are
designed for scene understanding [8, 57, 69, 74]. Many of
the images in these datasets are not suitable as the current
scene image, as they may contain excessive redundancy, un-
usual viewpoints, and narrow-angle perspectives. Therefore,
we apply filtering based on several criteria (see Figure S1 for
visualization of the filtering):

Quality. We employ CLIP-IQA [75] and CLIP Aes-
thetic [63] predictors to filter out images with poor visual
quality.
Perspective. To ensure appropriate viewpoint composition,
we utilize the Perspective Fields [28] to model the local
perspective properties (e.g., yaw, pitch, and FOV). We filter
out images with extreme roll or pitch angles and those with
a narrow FOV, aiming to retain open-angle, front-facing
perspectives.
Similarity. Since many datasets contain redundant sequen-
tial images, we use CLIPSIM [53] to remove visually similar
images.
Brightness. To exclude overly dark images, we compute
image brightness and filter out those below a predefined
threshold.
Human Judgment. Finally, we conduct a manual review to
refine the selection, ensuring the curated images align with
human perception and the intended use case.

B.2. Stylized Image Generation
After filtering and categorization, we obtain our photorealis-
tic image dataset. Then, for each photorealistic image, we
generate a stylized counterpart image using a text-to-image
model [55].
Predefined style sets. To ensure diversity of visual style,
we curate a predefined style set by referencing visual art his-
tory [59], supplemented with commonly used visual styles
from SDXL [64]. Our final selection includes: anime, cy-
berpunk, Chinese ink painting, ukiyo-e, impressionism, post-
impressionism, and minecraft. See example images in Fig-
ure S2.

B.3. Next-Scene Text Prompts Curation
We use GPT-4o [51] for scene description generation, with
distinct approaches for static and dynamic scenarios. Specif-
ically, for the static world generation task, we employ an
auto-regressive process using the following task specification
Jstatic for system calls:

“You are an intelligent scene generator. Imaging you
are wondering through a sequence of scenes, please tell me
what sequentially next scene would you likely to see? You
need to generate 1 to 3 most prominent entities in the scene.
The scenes are sequentially interconnected, and the entities
within the scenes are adapted to match and fit with the scenes.
You also have to generate a brief scene description. If needed,
you can make reasonable guesses. Please ensure the output
is in the following JSON format: {‘Entities’: [‘entity 1’, ...],

‘Prompt’: ‘scene description’}.”



Method Version Ability Resolution Length (s) FPS Open Source Speed† Camera§

Gen-3 [58] 24.07.01 I2V 1280×768 10 24 ✗ 1 min ✗

Hailuo [20] 24.08.31 I2V 1072×720 5.6 25 ✗ 3.5 min ✗

DynamiCrafter [84] 23.10.18 I2V 1024×576 5 10 ✓ 2.5 min ✗

VideoCrafter1 [9] 23.10.30
T2V 1024×576 2 8 ✓ 7 min ✗

I2V 512×320 2 8 ✓ 2 min ✗

VideoCrafter2 [10] 24.01.17 T2V 512×320 2 8 ✓ 2 min ✗

T2V-Turbo [41] 24.05.29 T2V 512×320 3 16 ✓ 5 s ✗

EasyAnimate [86] 24.05.29 I2V 1344×768 6 8 ✓ 16 min ✗

CogVideoX [88] 24.08.12
T2V 720×480 6 8 ✓ 2.4 min ✗

I2V 720×480 6 8 ✓ 2.4 min ✗

Allegro [97] 24.10.20 I2V 1280×720 6 15 ✓ 0.5 h ✗

Vchitect-2.0 [97] 25.01.14 T2V 768×432 5 8 ✓ 2.8 min ✗

LTX-Video [19] 25.05.05 I2V 768×512 4 30 ✓ 2.4 min ✗

SceneScape [16] 23.02.02 T2V 512×512 5 10 ✓ 11.4 min ✓

Text2room [24] 23.03.21 I2V 512×512 5 10 ✓ 12.4 min ✓

LucidDreamer [11] 23.11.22 I2V 512×512 5 10 ✓ 6.4 min ✓

WonderJourney [90] 23.12.06 I2V 512×512 5 10 ✓ 6.3 min ✓

InvisibleStitch [12] 24.04.30 I2V 512×512 5 10 ✓ 2.3 min ✓

WonderWorld [91] 24.06.13 I2V 512×512 5 10 ✓ 10 s ✓

4D-fy [3]∗ 23.11.29 T2V 256×256 4 30 ✓ 3 h ✓

Table S1. Further details of the world generation models in our benchmark. † The reported values indicate the average generation time
per instance. All generations were conducted on H100 and L40S GPUs. § This indicates whether the model accepts precise camera poses as
input. ∗ For 4D-fy, it takes about 20 hours for each generation, so we decrease the iteration steps to save time. While these models use
different output resolutions and aspect ratios, our validation shows that WorldScore metrics are robust against these differences (Sec. D).

Quality Perspective Similarity Brightness Manual

Figure S1. Filtering. We apply the filtering based on several criteria to remove undesired images. Besides automatic metrics, we also apply
a final manual inspection to remove infeasible world generation starting scenes such as the mid-air city image in the 4th column.

For the dynamic world generation task, we use the task
specification Jdynamic for single system call:

“You are an intelligent motion dreamer, capable of iden-
tifying the objects within an image that can exhibit dynamic
motion. I will provide you with an image, and your task is to
identify the most prominent object(s) that have the potential
for dynamic movement. You also have to briefly describe
how the object(s) move. If needed, you can make reasonable

guesses. Please ensure the output is in the following JSON
format: {’Objects’: [’object 1’, ...], ’Prompt’: ’description
of how the object(s) move’}.”

We show an example of generated next-scene prompts in
Table S3.
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Figure S2. Examples of stylized images. Our predefined style set contain 7 different visual art styles.

C. Additional Details on Metrics
C.1. Camera Controllability
As formulated in Eq. 3, we combine eθ and et with geometric
mean to calculate the camera error. Specifically, we estimate



Scene
Type

Dataset
Image
Type

Res. # Images

Indoor

InterviorVerse [98] Synthetic 640×480 50,000
Hypersim [57] Synthetic 1024×768 77,400
SUN-RGBD [69] Real 640×480 10,000
Matterport3D [8] Real 1280×1024 194,400
DIODE-indoor [74] Real 1024×768 9,052
ETH3D-indoor [62] Real 6214×4138 597

Outdoor

LHQ [67] Real 1024×1024 90,000
EDEN [38] Synthetic 640×480 300,000
Argoverse-HD [42] Real 1920×1200 70,000
DIODE-outdoor [74] Real 1024×768 18,206
ETH3D-outdoor [62] Real 6214×4138 301

Table S2. Statistics of the scene datasets we source from.

Generated Next-Scene Prompt N

Static world generation
# Scene 1
{“Entities”: [“yellow armchair”, “bookshelf”],

“Prompt”: “A Cozy Reading Nook with a plush Yellow
Armchair surrounded by a towering Bookshelf filled
with books.”}
# Scene 2
{“Entities”: [“potted plants”], “Prompt”: “A
serene Tranquil Garden Patio featuring a cozy Yel-
low Armchair surrounded by lush Potted Plants gen-
tly swaying in a soft, breezy atmosphere.”}
# Scene 3
{“Entities”: [“wooden rail”], “Prompt”: “A Rustic
Balcony Retreat featuring a cozy Yellow Armchair
and a classic Wooden Rail bathed in the warm glow
of the setting sun.”}

Dynamic world generation
{“Objects”: [“windmill”, “cloud”, “sea”],

“Prompt”: “The windmill blades spin in a circular
motion driven by the wind, creating a consistent ro-
tational movement. The clouds drift slowly across
the sky, pushed gently by the breeze. The sea surface
ripples and undulates, as small waves ripple across
its surface.”}

Table S3. An example of generated next-scene prompt for static
and dynamic world generation. The “prompt” in the above box is
the next-scene prompt N . The “entities” are the objects to detect
when computing object controllability. The “objects” are used to
help annotate the motion masks for computing motion accuracy.

the frame-wise camera poses using DROID-SLAM [72].
Then we compute the angular deviation between the ground

truth and the estimated camera rotations (in degrees):

eθ = arccos

(
tr(RgtR

T )− 1

2

)
· 180

π
, (S1)

and the scale-invariant Euclidean distance between ground
truth and estimated camera positions:

et = ∥tgt − st∥2, (S2)

where Rgt,R ∈ SO(3) denote the ground truth and esti-
mated rotation matrices, tgt, t ∈ R3 denote the ground truth
and estimated camera positions, and s denotes the least-
square scale.

The final camera controllability error for a model is com-
puted by averaging the error ecamera over all frames of all
generated videos.

C.2. 3D Consistency
To quantify the 3D consistency of generated videos, we use
DROID-SLAM [72] to do the reconstruction and calculate
the reprojection error. One key advantage of DROID-SLAM
is its dense nature. Unlike sparse methods such as COLMAP
[60, 61], which rely on selecting “good” feature matches
while discarding the rest, DROID-SLAM employs a dif-
ferentiable Dense Bundle Adjustment (DBA) layer. This
layer continuously refines camera poses and dense, per-pixel
depth estimates to ensure consistency with the current op-
tical flow. By leveraging all available points, rather than
focusing on partial matches, this dense approach aligns with
our goal of assessing 3D consistency across the entire scene.
This evaluation dimension ensures a more comprehensive
understanding of the spatial coherence in generated videos.

Specifically, we calculate the reprojection error after DBA
layer refinement:

ereproj =
1

|V|
∑

(i,j)∈V

∥∥p∗
ij −Π(Pij)

∥∥
2
, (S3)

where V denotes the valid set of co-visible points, p∗
ij is

the observed point on the ground truth image, Pij is the
reconstructed 3D point, obtained from refined depth and
camera pose, ∥·∥2 calculates the Euclidean distance.

C.3. Photometric Consistency
The photometric consistency metric is to quantify the model
capability to generate stable visual appearances. We estimate
the optical flow between consecutive frames and compute
the Average End-Point Error (AEPE). Specifically, given two
consecutive frames A and B, we first track a set of center-
cropped points pA from frame A to frame B using forward
optical flow FA→B :

pB = pA + FA→B(pA). (S4)



Static

Visual Style Scene Type Category # Samples

Photorealistic
Indoor Dining, Living, Passage, Public, Work 5× 100

Outdoor City, Suburb, Aquatic, Terrestrial, Verdant 5× 100

Stylized
Indoor Dining, Living, Passage, Public, Work 5× 100

Outdoor City, Suburb, Aquatic, Terrestrial, Verdant 5× 100

Dynamic

Visual Style Motion Type # Samples

Photorealistic Articulated, Deformable, Fluid, Rigid, Multi-Motion 5× 100

Stylized Articulated, Deformable, Fluid, Rigid, Multi-Motion 5× 100

# Total Samples 3000

Table S4. Dataset Statistics. We curate a dataset of 3000 test samples that span diverse worlds: static and dynamic, photorealistic and
stylized, indoor and outdoor. The static subset is further divided into 5 indoor and outdoor scene categories, while the dynamic subset is
categorized by 5 motion types.

We then track the same points back from frame B to
frame A using backward optical flow FB→A:

p′
A = pB + FB→A(pB). (S5)

Ideally, if the object remains photometrically consistent,
the tracked points should return to their original locations,
i.e., p′

A ≈ pA. we quantify the deviation using the AEPE:

ephotometric =
1

N

N∑
i=1

∥∥pA,i − p′
A,i

∥∥
2
, (S6)

where N is the number of sampled points. A higher AEPE in-
dicates greater photometric inconsistency, signaling anoma-
lies such as identity shifts, texture flickering, or object dis-
appearances. Finally, the photometric consistency error is
computed by averaging ephotometric over all consecutive frame
pairs of all generated videos.

C.4. Subjective Quality
Numerous trained image quality assessment metrics exist,
such as CLIP-Aesthetic [63] and QAlign-Aesthetic [82],
which focus on factors like layout composition, color har-
mony, realism, and artistic appeal. Additionally, image qual-
ity predictors like MUSIQ [35] and CLIP-IQA [75] evaluate
distortions such as overexposure, noise, and blur.

Our goal is to use automatic metrics that align well with
human perception to evaluate the subjective quality of gen-
erated scenes. To identify the (combination of) best subjec-
tive quality predictors, we systematically conduct a human
preference study the pick the one that best matches human
perception on world generation quality. We find that the com-
bination (arithmetic mean) of CLIP-IQA+ [75] and CLIP
Aesthetic [63] works the best. We show more details in
Sec. D.

C.5. Motion Accuracy
We assess whether motion occurs in the intended regions by:

smotion-acc = max (F⊙M)−max
(
F⊙ M̄

)
, (S7)

where F ∈ RH×W denotes the magnitude of optical flow
between a pair of consecutive frames in the generated video
V estimated by SEA-RAFT [79], M ∈ {0, 1}H×W denotes
the segmentation masks at the former frame which has 1 at
the pixels of dynamic objects, and the max operator picks
the maximum value among all the entries of a matrix. We
track the mask of dynamic objects M using SAM2 [54],
where the first-frame segmentation masks are provided in
our dataset. The final motion accuracy score is computed by
averaging smotion-acc across all pairs of consecutive frames of
all generated videos.

C.6. Motion Magnitude
Some models take a “conservative” approach, generating
only subtle motion. While the output appears visually
smooth and high-quality, the motion is often minimal and
uninteresting. Some models even produce near-static videos
despite prompts explicitly describing motion. We measure
this with smotion-mag, defined as the median value of all the
entries of F, and the final motion magnitude metric is the
average of smotion-mag across all pairs of consecutive frames
of all generated videos.

C.7. Motion Smoothness
We leverage the motion priors from a standard video frame
interpolation models [93] to evaluate the smoothness of gen-
erated motion. Specifically, given a generated video con-
sisting of frames {f0, f1, f2, · · · }, we drop the odd-indexed
frames {f1, f3, · · · } to obtain a lower frame rate video, and



then we use video frame interpolation to infer the dropped
frames. Finally, we compute the mean squared error, SSIM
[80], and LPIPS [94] between the reconstructed frames and
the original dropped frames. After each metric score is com-
puted and normalized (Supp. C.9), we average them to get
the motion smoothness metric.

C.8. Empirical Bounds
In this section, we discuss how we calculate the empirical
bounds for each evaluation dimension, which will be used
for linear normalization in Supp. C.9.

Empirical bounds for camera controllability. Since the
camera controllability metric calculates the deviation be-
tween the ground truth and estimated camera poses, the
empirical minimum is naturally 0, which also represents
the theoretical lower bound. To approximate the highest
achievable values, we use a sequence of fixed cameras as a
baseline. This effectively penalizes poorly performing world
generation that fails to exhibit any camera movement.

Empirical bounds for object controllability. Since we eval-
uate object controllability using the object detection rate, the
empirical minimum and maximum are naturally 0 and 100%,
respectively, which also represent the theoretical bounds.

Empirical bounds for 3D consistency, style consistency,
and photometric consistency. To establish empirical
bounds for these frame-wise metrics, we randomly sample
image pairs from our dataset and generate videos by interpo-
lating intermediate frames using a video frame interpolation
model [93]. This serves as a baseline exhibiting significant
style shifts, low 3D consistency, and poor photometric sta-
bility. We define this baseline as empirical maximum for all
three metrics, while the empirical minimum for each is set
to 0, which is also theoretical minimum.

Empirical bounds for motion smoothness. To determine
empirical values for motion smoothness, we leverage high-
quality real-world videos. Given that most world generation
models produce 3-10 second videos, we retrieve compara-
ble video clips from OpenVid-1M [50], a large-scale, high-
quality video dataset. Specifically, for each prompt in our
benchmark, we retrieve the top five OpenVid-1M videos
with the highest semantic similarity using CLIP-based text
feature matching. Only 3-10 second clips are considered to
ensure consistency with the length of generated videos.

Then, we use the retrieved videos as a reference. We man-
ually drop the odd frames and apply bilinear interpolation
to reconstruct them. This serves as a baseline, where the
resulting interpolated videos represent the “empirical worst”
(empirical maximum for MSE and LPIPS and empirical min-
imum for SSIM). The “empirical best” is set to 0, indicating
perfectly smooth motion.

Empirical bounds for content alignment, subjective qual-
ity, motion accuracy, and motion magnitude. For these

four metrics, defining appropriate empirical bounds is chal-
lenging. To address this, we apply z-score rescaling, setting
the empirical best and worst values so that the performance
of selected models falls within the 25 to 75 range. This ap-
proach enhances differentiation and ensures a more reliable
evaluation.

C.9. Score Normalization and Mapping
The detailed formulation for score normalization and map-
ping is as follows:

snorm =


〈

s−bmin

bmax−bmin

〉
, if higher better,〈

1− s−bmin

bmax−bmin

〉
, if lower better,

(S8)

where s denotes the raw value of a given metric, bmin and bmax

denote the empirical bounds of the metric, and ⟨·⟩ denotes
the clip function, making sure the normalized score snorm is
within the range [0, 1], where a higher value corresponds to
better performance.

D. Validation with Human Preference
We validate the WorldScore metrics by human preference
study for three purposes: Firstly, we use human preference
to select the best combination of subjective quality metrics
(e.g., image quality assessment metrics and aesthetic metrics)
to form a single “subjective quality”. Secondly, we use hu-
man preference to validate other WorldScore metrics. Lastly,
we measure how robust are the metrics to different resolu-
tions and aspect ratios. In particular, we use the following
agreement score.
Human preference agreement score. To measure how well
each metric aligns with human preferences, we adopted a
probabilistic agreement score. Given a video pair (A,B), a
participant is forced to choose one video that appears to have
higher subjective quality to them, a.k.a. 2-alternative forced
choice (2AFC). We denote the portion of all participants who
preferred A as p, therefore the portion of all participants who
preferred B is 1−p. Then, consider an automatic assessment
metric m:
• If the metric m assigned a higher score to A, i.e.,

scorem(A) > scorem(B), then the agreement score for
this pair (A,B) is p.

• If the metric m assigned a higher score to B, i.e.,
scorem(A) < scorem(B), then the agreement score for
this pair (A,B) is 1− p.

• If the metric assigned equal scores to A and B, then the
agreement score was set to 0.5.

The final agreement score for each metric was obtained by
averaging the agreement scores across all human-rated pairs.

To prepare the pairs of videos for human participants, we
randomly sampled videos generated from CogVideoX-I2V,



VideoCrafter1-I2v, DynamiCrafter, WonderJourney, and In-
visibleStitch. Each comparison consisted of a pair of videos
from different models. We recruited 400 participants for the
human study.

Note that in our human preference study, we only use
a single question, asking the participant “which video has
higher quality”. While there are possibly different dimen-
sions of subjective quality such as aesthetic quality and per-
ceptual quality, our preliminary human preference study
indicates that general human raters often struggle to differ-
entiate between specific dimensions, yielding a very high
correlation between aesthetic quality and perceptual quality.
Therefore, we only use a single question.

Agreement results on subjective quality. We show the
agreement results in Table S5. Since the combination (arith-
metic mean) of CLIP-IQA+ [75] and CLIP Aesthetic [63]
metrics yield the highest agreement, we use this combination
to compute our subjective quality.

Agreement results on other metrics. To validate other
metrics, we divide them into different score buckets, i.e.,
90± 5, 60± 5, and 30± 5; and then we compare between
buckets. We show results in Table S6. The 2AFC results
show the our metrics align well with human perception, so
that a higher score (both “90 over 60” and “60 over 30”)
consistently correlate to a higher human preference.

Robustness against different resolutions and aspect ra-
tios. We validate if the metrics are robust to different resolu-
tions and aspect ratios because models vary in these aspects.
We use the videos generated by the highest-resolution model
(EasyAnimate, 1344×768) and apply center-cropping and re-
sizing to a create a version with small resolution (256×256).
We evaluate both versions and show results in Table S7. The
differences in all metrics are very small (≤ 0.83), suggesting
that our metrics are robust to these differences.

E. Further Visualization
Our WorldScore metrics provide a comprehensive assess-
ment by decomposing the broad concept of “world genera-
tion capability” into 10 independent dimensions. The typical
examples for each metric are presented in Figure S3 and
Figure S4. Each row showcases the evaluation of a metric on
two generated results, highlighting how WorldScore metrics
effectively differentiate model performance.

We show performances of selected models on
WorldScore-Dynamic in Figure S5 and WorldScore-Static in
Figure S6. Figure S5 highlights the challenges that current
video generation models face, with significant variations
across different dimensions. Notably, all video generation
models (e.g., Hailuo, VideoCrafter1-I2V, EasyAnimate, T2V-
Turbo) exhibit very low camera controllability, indicating
difficulty in following predefined camera trajectories. Ad-
ditionally, models (e.g., T2V-Turbo) that perform well in

Metric Correlation

CLIP-IQA 0.596
CLIP-IQA+ 0.602
QAlign Quality 0.581
QAlign Video Quality 0.571
MUSIQ 0.530
CLIP Aesthetic 0.628
QAlign Aesthetic 0.479
QAlign Video Aesthetic 0.556

CLIP-IQA+ & QAlign Quality 0.582
CLIP Aesthetic & QAlign Video Aesthetic 0.629
CLIP-IQA+ & CLIP Aesthetic 0.637

Upper Bound 0.772

Table S5. Agreement of automatic assessment metrics with
human preference. The upper bound is the highest possible agree-
ment score when a metric always agrees with the majority vote for
every 2AFC pair.

Cam Ctrl Obj Ctrl 3D Consist Photo Consist Motion Mag

60 ± 5 over 30 ± 5 71.2% 96.3% 91.7% 91.6% 91.8%
90 ± 5 over 60 ± 5 73.5% 87.7% 97.3% 95.1% 76.2%

Table S6. 2AFC on WorldScore metrics with score difference 30.

Res.
Cam
Ctrl

Obj
Ctrl

Content
Align

3D
Consist

Photo
Consist

Style
Consist

Subject
Qual

Motion
Acc

Motion
Mag

Motion
Smooth

1344×768 25.72 54.50 49.81 67.29 46.65 73.05 49.66 75.00 37.76 40.32
256×256 25.69 53.78 50.32 67.41 47.06 73.88 48.99 74.89 36.90 39.62

Table S7. Robustness to resolution and aspect ratio differences.

motion magnitude tend to struggle with motion smoothness,
suggesting a trade-off between large movements and tempo-
ral stability.

In Figure S6, the evaluation of static world generation
shows that 3D scene generation models (e.g., WonderWorld)
achieve high camera controllability, 3D consistency and pho-
tometric consistency. However, they may struggle in subjec-
tive quality, indicating that while they excel in maintaining
geometric and photometric coherence, they may generate
less visually appealing results.



High camera controllability: 99.96 Low camera controllability: 0.00

High content alignment: 71.13 Low content alignment: 0.00

High object controllability: 100.00 Low object controllability: 25.00

High 3D consistency: 92.88 Low 3D consistency: 0.00

High subjective quality: 100.00 Low subjective quality: 25.27

High style consistency: 84.80 Low style consistency: 0.00

High photometric consistency: 94.28 Low photometric consistency: 11.95

Next scene Good examples Bad examples

“Camera 
pans right”

“Seating area, 
plants, cityview, 

chairs”

“Balcony 
featuring 

plant”

“Seaside 
dining, 

seagull”

“Peaks, 
clouds”

“Urban 
streetview”

“A bright 
modern 
kitchen”

Figure S3. Typical examples from controllability and quality aspects. Each row showcases the evaluation of a metric on two generated
results, where the good example is shown on the left, and the bad example is shown on the right.



High motion accuracy: 100.00 Low motion accuracy: 0.00

High motion smoothness: 91.06 Low motion smoothness: 20.54

High motion magnitude: 100.00 Low motion magnitude: 29.80

Scene motion Good examples Bad examples

“Octopus 
moves”

“Octopus 
glides”

“Figure 
scans 

horizon”

Figure S4. Typical examples from dynamics aspect. Each row showcases the evaluation of a metric on two generated results, where the
good example is shown on the left, and the bad example is shown on the right.

0 20 40 60 80 100

Hailuo VideoCrafter1-I2V

T2V-Turbo EasyAnimate

CogvideoX-I2V 4D-fy
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Figure S5. Evaluation results of WorldScore-Dynamic on selected
models.
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Figure S6. Evaluation results of WorldScore-Static on selected
models
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