Counting Stacked Objects

Supplementary Material

7. Dataset Details
7.1. 3DC-Real dataset.

We capture 45 real scenes where the objects to count can
be any stack of items that are at least partially visible. This
includes stacked objects on a table or on the floor, objects
in containers such as bowls or boxes, or objects still in their
packaging.

Cameras. We use a regular RGB smartphone camera to
capture 30-60 pictures of the scene from various angles,
forming a semisphere surrounding the objects and their con-
tainer. These images are downscaled to approximately 600
pixels wide to reduce memory usage and facilitate the pro-
cessing with COLMAP [20]. Additionally, we take a mea-
surement of an arbitrary object within the scene, allowing
us to scale the camera measurements and align the unit dis-
tance of the scene with a meter in the real world.

Initially, we experimented with triangulation methods
using two pairs of corresponding points across images. This
would enable the calculation of a 3D distance and allow us
to scale the scene. However, this approach proved to be un-
stable, as small inaccuracies in point matching led to signif-
icant variations in the scaling. Instead, we reconstructed the
3D scene with 3DGS [6] and measured the 3D distance di-
rectly within the reconstruction. This measurement allows
us to rescale the scene to match the reference measurement.
Note that the 3D point cloud generated by COLMAP [20],
which is used as an initialization by 3DGS, is also scaled
accordingly.

Unit volume. For each scene, we require the unit volume
of the object being counted. For complex shapes, we de-
termine the unit volume v by 3D reconstruction, similar to
the method described in our main paper. For many common
food items, such as kidney beans or corn, this information
is readily available online. For other scenes, the volume can
be approximated, for example in the case of the beads in
Fig. 1, by subtracting the volume of a cylinder from that of
a sphere.

Pre and Post-processing. Using this method, we capture
45 scenes consisting of various items in different environ-
ments. The scenes vary in complexity, from simple quasi-
spherical objects in containers to more challenging configu-
rations, such as complicated shapes still in packaging (e.g.,
in the pasta scene). Some items are used in several scenes,
in which case the container and location are modified to cre-
ate a new setting.

7.2. 3DC-Synthetic Dataset.

To generate our large-scale synthetic dataset, we utilize
Blender, a free and open-source 3D creation suite that sup-
ports Python scripting. This allows us to implement a fully
automated generation pipeline, which is mainly composed
of two steps: simulation and rendering.

Simulation. We drop batches of objects, arranged in a 4 X
4 x 5 grid, into a box positioned at (0,0,0.5). The box
has a side length of 1 and a thickness of 0.04. Once the
simulation converges, we check if the union of the objects
intersects with an invisible cube placed directly on top of
the box. If an intersection occurs, the simulation stops, and
objects outside the box are deleted. If no intersection is
detected, a new batch of objects is added, and the simulation
is performed again.

We use the convex hull to compute collision between ob-
jects. Ideally, we would use the triangle mesh itself, how-
ever this becomes far too costly when physically simulating
thousands of shapes with tens of thousands of triangles. We
experimented with using convex hulls first, and then refin-
ing with additional frames using the triangle mesh, but this
turned out to still be extremely costly and computationally
very unstable, leading to objects being ejected outside the
box due to the change in collision computation.

Rendering. For rendering, we use a texture randomly
sampled from 3 possibilities for the box, five textures for
the ground, and a random material for each model chosen
from one of the following: a realistic grey metal texture, a
red metallic texture, or a plastic material with a randomly
selected color.

We always render the first view directly above the box,
looking downwards, which we call the nadir view. For the
validation dataset, we also generate 29 additional views on
the unit sphere, each observing the box from different an-
gles. The rendering is performed using Blender’s Cycles
rendering engine. Additionally, we generate ground-truth
depth maps and masks that separate the ground, box, and
objects in the images.

Pre and Post-processing. In addition to the simulation
and rendering steps, we perform pre-processing to filter out
unsuitable meshes, such as those with multiple connected
components or excessive size. Since the physical simula-
tion can sometimes be unstable or fail, we also remove a
small fraction of results in post-processing. This includes
cases where the unit volume is too small or where too few
objects remain in the box in the final frame.

---- Mean: 0.3234
200

200
3 3
§ 150 gﬁ 150
w 1]
o 100 5 100
#*
50 50
0 0
0.0 0.2 0.4 0.6 0.0 0.2

Ywith_edges (%)

Yno_edges (%)

---- Mean: 0.3391
0.6
S
v 0.4
9
(=2
°
lvl
o
<02
0.0
0.4 0.6 0.0 0.2 0.4 0.6

Yuwith_edges (%)

Figure 10. Border effects. Measuring the ground-truth over the complete box or over only a smaller section makes little difference,
indicating that our assumption of uniform - across the volume is justified.

Finally, we export the calibrated camera parameters in a
format compatible with nerfstudio [25]. Since these cam-
eras are not produced by COLMAP, they do not include a
3D point cloud that 3DGS can use as initialization. This
poses a challenge, as a fully random initialization may gen-
erate distant Gaussian points outside the cameras’ range,
which are not removed and interfere with the volume esti-
mation. To address this, we generate a set of 100 grey points
within the unit cube, centered at (0, 0, 0.5). This simple ini-
tialization proves sufficient to quickly produce a faithful 3D
reconstruction and resolves the aforementioned issue.

8. Additional comparison distinguishing visi-
ble and invisible objects.

Our method is, to the best of our knowledge, proposing the
first solution for this task. The methods used as compari-
son in 4 are initially designed to count only visible objects,
and perform poorly on our dataset. In this section, we dis-
tinguish between visible and invisible objects in stacks and
evaluate baseline methods against both counts. To perform
this evaluation, we manually annotate the locations of visi-
ble objects in real scenes and provide the visible count and
locations in our released datasets. Two examples are dis-
played in Fig. 11.

The results of this experiment can be found in Tab. 6.
While the numbers for the 2D counting methods improve,
it remains hard for them to distinguish similar objects
clumped together. As a result, their performance re,ains
much lower on these challenging scenes than on traditional
2D counting benchmarks.

9. Evaluation metrics

In this section, we provide the exact formula behind the
metrics used in Sec. 4. As explained, the NAE and SRE
are defined as:

Doy v — Uil

_ Z?:l(yi - ?)z’)Q
21:1 Yi ’

Z?:l le

NAE = SRE

Figure 11. Localization of visible objects. Left: N,;s = 168,
Right: NVyis = 96

NAE, SRE, SsMAPE,
Visible objects only
BMNet+ [21] 0.51 0.65 51.28
SAM+CLIP [7,16] 0.57 0.81 50.84
All objects
BMNet+ [21] 0.93 0.98 131.44
SAM+CLIP [7,16] 0.94 0.99 124.31
Ours 0.36 0.06 53.31

Table 6. Counting visible and invisble objects separately.

We also report the Symmetric Mean Absolute Percentage
Error (sSMAPE), which can be considered a normalized per-
centage error. It is expressed as follows:

lyi — Uil
(yi +9:)/2

100% <
MAPE =

The formula of SMAPE ensures that errors are scaled sym-
metrically between the prediction and ground truth counts.
Finally, the coefficient of determination, R?, measures the
proportion of variance in the ground-truth occupancy ratio
7 explained by our predictions

Yy =)
where y is the mean of the ground truth counts. High values

of R? indicate strong agreement between predictions and
ground-truth values.

R*=1-

400 -~ Mean: 399.93 1000

w
=3
=1

600

400

of scenes
N
8
3
Object Count

1)
5]

200

400 600 800
Object Count

200 1000 0.000 0.002 0.004 0.006

Object Volume

0.008

of scenes

T 0.6
--- Mean: 0.3234 I
'

.5

Occupied Volume (%

!
!
i
100 |
i
!
!

0 ! 0
0.0 0.2 0.6

0.4 %000
Occupied volume (%)

0.002 0.004 0.006
Object Volume

0.008

Figure 12. Dataset statistics. The histograms represent the distributions of object count and occupancy ratio, respectively, and each
bar plots the number of scenes in a given bin. In scatter plots, each point represents a physically simulated 3D scene. In particular, the

occupancy ratio -y spans a large range between 1% and 65%

10. Additional Discussion on Border Effects

In our work, we assume that the occupancy ratio, v, is
approximately uniform throughout the container. This as-
sumption generally holds as the number of stacked objects
increases. However, it neglects the influence of container
borders, where objects tend to occupy less volume due to
the boundary.

To quantitatively evaluate the impact of border effects
and verify the validity of our uniform assumption, we
analyze the ground-truth volume ratio in two distinct ways
using our large-scale synthetic dataset. First, we compute
Ywith_cdges TOT the entire unit box, as described in the main
paper. Additionally, we compute Yno_edges Dy measuring the
volume ratio in a smaller sub-box of side length 0.5, cen-
tered within the unit box. Intuitively, the difference be-
tWeen Yyith_edges aNd Yno_edges Teflects the influence of border
effects, allowing us to evaluate whether this assumption is
justifiable.

Figure 10 presents two histograms comparing the distri-
butions of Yyt edges aNd Yno_edges- The results indicate that
both metrics follow highly similar distributions, with their
mean values differing by less than 5%. Notably, the mean
value of Yo cdges 15 slightly higher than that of it cdges
consistent with the intuition that density decreases near bor-
ders.

To further investigate the relationship between these two
values, we provide a scatter plot of Yyt edges VETSUS Yno_cdges
in Fig. 10. The plot demonstrates a strong correlation
between the two measures, particularly for objects with
small volume ratios. For objects with high values of both
VYwith_cdges AN Yno_edges, Minor discrepancies are observed.
These differences can be attributed to the relatively large
size of these objects compared to the measurement box,
which introduces noise in the estimation of ~.

Overall, these analyses confirm that ~yim cqgges and
Yno_edges are highly consistent and can be used interchange-
ably without significant loss of accuracy. In our experi-
ments, we rely on 7yith edges O train our occupancy ratio
estimation network.

11. Implementation details

We use the nerfstudio library [25] for 3D reconstruction,
specifically the splatfacto method built on top of the gsplat
library [32]. We thank the contributors of all the aforemen-
tioned libraries.

Our pipeline also uses pretrained models for depth es-
timation and mask generation. We employ the vit/ model
from Depth Anything v2 [30] for depth estimation and the
sam2.1 _hiera_large model from SAM2 [19] for mask gen-
eration. These state-of-the-art models ensure high-quality
and robust outputs across diverse scenes.

The dataset is generated using CPUs only, greatly reduc-
ing its production cost and environmental impact. Other
operations are fairly light and performed locally on a 4080
Mobile GPU, taking up only a few gigabytes of VRAM and
being completed in a couple minutes.

12. Architecture details

Our architecture utilizes a DinoV2 [15] encoder model that
produces pixel-aligned features. Since DinoV2 downscales
the input image by 14, we feed it an image of size 448 x 448
to produce a 32 x 32 x 768 feature image. Specifically, we
use the pretrained weights of the dinov2_vitb14 model and
freeze them during all subsequent learning.

To predict a scalar value from the 32 x 32 x 768 feature
image produced by DinoV2, we employ a series of convolu-
tional layers to progressively reduce both the spatial dimen-
sions and the number of channels. The convolutional layers
successively reduce the channel dimension from the initial
768 down to 512, 256, 128, and finally 64. Concurrently,
the spatial dimensions of the feature map are reduced from
32 x 32t0 16 x 16,8 x 8,4 x 4, and ultimately 2 x 2.

Following this, an adaptive average pooling layer com-
presses the spatial dimensions to a single pixel while pre-
serving the 64-channel depth. The resulting 1 x 1 x 64 ten-
sor is passed through a fully connected linear layer to map
it to a scalar output. Finally, a sigmoid activation function
is applied to produce the final prediction in the [0, 1] range.

