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A. Benchmark Details
This section provides more details about the benchmarking
dataset.

A.1. List of Shifts, Classes, and Example Images
The results are averaged over the following 14 shifts:
cartoon style, plush toy style, pencil sketch style,
painting style, design of sculpture, graffiti style,
video game renditions style, style of a tattoo, heavy
snow, heavy rain, heavy fog, heavy smog, heavy
dust, heavy sandstorm (see examples in Fig. 34 and
Fig. 35). We train the sliders using the prompt tem-
plate “A picture of a {class} in {shift}”.
Here, we consider the following classes: hammerhead,
hen, ostrich, junco, bald eagle, common newt, tree frog,
african chameleon, scorpion, centipede, peacock, toucan,
goose, koala, jellyfish, hermit crab, pelican, sea lion,
afghan hound, bloodhound, italian greyhound, whippet,
weimaraner, golden retriever, collie, border collie, rot-
tweiler, french bulldog, s aint bernard, siberian husky,
dalmatian, pug, pembroke, red fox, leopard, snow leopard,
lion, ladybug, ant, mantis, starfish, wood rabbit, fox
squirrel, beaver, hog, hippopotamus, bison, skunk, gibbon,
baboon, giant panda, eel, puffer, accordion, ambulance,
basketball, binoculars, birdhouse, bow tie, broom, bucket,
cannon, canoe, carousel, cowboy hat, fire engine, flute,
gasmask, grand piano, hammer, harp, hatchet, jeep,
joystick, lipstick, mailbox, mitten, parachute, pickup, sax,
school bus, soccer ball, submarine, tennis ball, warplane,
ice cream, bagel, pretzel, cheeseburger, hotdog, head
cabbage, broccoli, cucumber, bell pepper, granny smith,
lemon, burrito, espresso, volcano, ballplayer.

B. More Benchmarking Results
Fig. 9 presents the accuracy drops averaged over all shifts
and Tab. 5 lists all average accuracies and accuracy drops
for all evaluated models and shift scales. Fig. 11 plots the
accuracy drops for painting, cartoon, and snow shifts with
confidence intervals. As discussed in the main paper, we
also provide the accuracy drops for the ResNet family in
Fig. 12. Similar to the observations in Tab. 3, larger models
result in a lower accuracy drop in average. Fig. 10 provides
a more nuanced view on the model performances across var-
ious architectures on all shifts. We also plot failure point
distributions in Fig. 13. Fig. 15 presents more classifier re-
sults on the labeled dataset.

The accuracies for the diffusion classifier are depicted in
Fig. 14. Similar to the discussion in the paper, the results
showcase that the generative classifier is less robust than a
supervised classifier. We use the DiT-based diffusion classi-
fier trained on ImageNet-1k using the available framework
[33] and the default hyper-parameters with a resolution of
256. Due to high computational costs, we compute the re-
sults for 100 classes, four scales, for the snow and cartoon
style shift, and for at most 20 seeds per class, scale, and
shift.

C. Fine-tuning with Synthetic Data

We fine-tune a ResNet-50 classifier using our synthetic
data. We compare the original ImageNet-trained model to
a model fine-tuned using 50% synthetic data and 50% Im-
ageNet training data. As shown in Tab. 6, the fine-tuned
model leads to improved performance on the shifted real-
world dataset, without a significant decline on the original
ImageNet dataset.

D. Accuracy Drops on ImageNet-C

We provide more evidence that the model rankings can
change for different scales for ImageNet-C as well. We
consider seven levels of contrast as a deterministic example
corruption from ImageNet-C, based on the implementation
of Hendrycks and Dietterich [24]. We present the accuracy
drops for all corruption levels in Fig. 16 and Fig. 17. Similar
to our benchmark, a global averaged metric fails to capture
such variations.

E. Comparison to ImageNet-C/R

While ImageNet-R evaluates style shifts, it includes con-
founders, such as heavy shape and perspective changes
(Fig. 19). Our approach aims at reducing such factors by re-
ducing variations of the spatial structure of the image when
gradually applying the shift.

F. Discussion of Accuracy-on-the-Line

We observe that larger models obtain higher OOD accura-
cies, i.e., smaller accuracy drops, as shown in Fig. 9 (Model
size). However, ID and OOD accuracy are correlated, as
we show in Fig. 22. As prior work [43] has shown that
ID and OOD accuracy relate linearly, i.e., accuracy on the
line, we want to study whether the larger parameter count
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Figure 9. Accuracy drops averaged over the whole benchmark. Architecture (left): We show models with the same training data
and similar parameter counts. The selection of the architecture influences the accuracy drop. Model size (center): We show DeiT3 with
various numbers of parameters. Increasing the model capacity results in lower accuracy drops. Pre-training paradigm and data (right): We
show different pre-training paradigms: supervised, self-supervised (MAE, DINO, MoCo), and more data (IN21k), all using ViT-B/16. We
present results for all shifts in Fig. 10.

Table 4. mCE and mean rCE. We present the mean corruption error and the mean relative corruption error for all evaluated models.

CE rCE

alexnet 1.000 1.000
clip resnet101 0.532 0.563
clip resnet50 0.715 0.587
clip vit base patch16 224 0.420 0.230
clip vit base patch32 224 0.487 0.591
clip vit large patch14 224 0.445 0.228
clip vit large patch14 336 0.419 0.274
convnext base.fb in1k 0.359 0.686
convnext large.fb in1k 0.354 0.672
convnext small.fb in1k 0.353 0.609
convnext tiny.fb in1k 0.393 0.809
convnextv2 base.fcmae ft in1k 0.322 0.680
convnextv2 huge.fcmae ft in1k 0.283 0.553
convnextv2 large.fcmae ft in1k 0.297 0.568
deit3 base patch16 224.fb in1k 0.396 0.610
deit3 huge patch14 224.fb in1k 0.353 0.583
deit3 large patch16 224.fb in1k 0.382 0.574
deit3 medium patch16 224.fb in1k 0.387 0.758
deit3 small patch16 224.fb in1k 0.400 0.747
deit base patch16 224.fb in1k 0.437 0.746
dino vit base patch16 0.504 0.851
dinov1 vit base patch16 0.412 0.676
dinov2 vit base patch14 0.350 0.524
dinov2 vit base patch14 reg 0.311 0.456
dinov2 vit giant patch14 0.321 0.431
dinov2 vit giant patch14 reg 0.311 0.426
dinov2 vit large patch14 0.298 0.349
dinov2 vit large patch14 reg 0.296 0.370
dinov2 vit small patch14 0.351 0.639
dinov2 vit small patch14 reg 0.330 0.627
mae vit base patch16 0.386 0.732
mae vit huge patch14 0.303 0.542
mae vit large patch16 0.328 0.571
mocov3 vit base patch16 0.379 0.669
resnet101.a1 in1k 0.491 0.842
resnet152.a1 in1k 0.498 0.790
resnet18.a1 in1k 0.493 0.954
resnet34.a1 in1k 0.440 0.843
resnet50.a1 in1k 0.485 0.945
vit base patch16 224.augreg in1k 0.569 0.926
vit base patch16 224.augreg in21k ft in1k 0.460 0.722
vit base patch16 clip 224.openai ft in1k 0.282 0.482
vssm base v0 0.371 0.574

explains the higher robustness or whether this is solely ex-
plained by the accuracy-on-the-line observation. Therefore,
we remove the effect of the ID accuracy on the OOD ac-
curacy by computing the partial correlation between model
size and OOD accuracy. Fig. 20 show the slopes for var-
ious shifts and Fig. 21 provides the p-values of the linear
regression corresponding to the presented results in Fig. 20.
This partial correlation coefficient is significantly negative
(ρsize,OOD·ID = -0.358 for the DeiT3 family). Therefore,
we conclude from our analysis that the improvements can
be explained by the improved ID accuracy but not by more
parameters.

We further explore how removing the linear relation (as,
e.g., in Fig. 23) explains the better OOD accuracy in Fig. 24.



Table 5. Accuracy evaluations. We present the accuracies and accuracy drops of all evaluated classifiers.

Shift Scale
Accuracy Accuracy Drop

model 0 0.5 1 1.5 2 2.5 avg 1 1.5 2 2.5 avg
clip resnet50 0.81 0.81 0.8 0.78 0.74 0.67 0.77 0.01 0.03 0.07 0.14 0.04
clip resnet101 0.86 0.86 0.85 0.83 0.81 0.74 0.82 0.01 0.03 0.06 0.12 0.04
clip vit base patch16 224 0.87 0.88 0.88 0.87 0.86 0.81 0.86 -0.00 0.01 0.02 0.06 0.02
clip vit base patch32 224 0.87 0.87 0.86 0.85 0.83 0.77 0.84 0.01 0.02 0.04 0.1 0.03
clip vit large patch14 224 0.87 0.87 0.87 0.86 0.85 0.82 0.86 -0.00 0.01 0.02 0.05 0.01
clip vit large patch14 336 0.88 0.88 0.88 0.87 0.86 0.83 0.87 0.00 0.01 0.02 0.05 0.01
convnext tiny.fb in1k 0.92 0.92 0.91 0.88 0.84 0.77 0.87 0.01 0.04 0.08 0.15 0.05
convnext small.fb in1k 0.92 0.93 0.92 0.89 0.86 0.8 0.89 0.01 0.03 0.07 0.13 0.04
convnext base.fb in1k 0.93 0.93 0.92 0.89 0.85 0.79 0.89 0.01 0.03 0.07 0.13 0.04
convnext large.fb in1k 0.93 0.92 0.92 0.89 0.86 0.8 0.89 0.01 0.04 0.07 0.12 0.04
convnextv2 base.fcmae ft in1k 0.93 0.93 0.92 0.9 0.87 0.82 0.9 0.01 0.04 0.07 0.12 0.04
convnextv2 large.fcmae ft in1k 0.94 0.93 0.93 0.91 0.88 0.84 0.91 0.01 0.03 0.05 0.1 0.03
convnextv2 huge.fcmae ft in1k 0.94 0.93 0.93 0.91 0.89 0.84 0.91 0.01 0.03 0.05 0.09 0.03
deit3 small patch16 224.fb in1k 0.92 0.92 0.91 0.88 0.84 0.77 0.87 0.01 0.04 0.08 0.15 0.05
deit3 base patch16 224.fb in1k 0.91 0.91 0.9 0.88 0.84 0.79 0.87 0.01 0.03 0.07 0.12 0.04
deit3 medium patch16 224.fb in1k 0.92 0.92 0.91 0.88 0.84 0.78 0.88 0.01 0.04 0.08 0.14 0.05
deit3 large patch16 224.fb in1k 0.91 0.91 0.9 0.88 0.85 0.8 0.88 0.01 0.03 0.06 0.12 0.04
deit3 huge patch14 224.fb in1k 0.92 0.92 0.91 0.89 0.86 0.81 0.89 0.01 0.03 0.06 0.11 0.04
deit base patch16 224.fb in1k 0.9 0.9 0.89 0.87 0.83 0.76 0.86 0.01 0.04 0.08 0.15 0.05
dino lp vit base patch16 0.9 0.9 0.89 0.85 0.8 0.71 0.84 0.01 0.05 0.1 0.19 0.06
dinov1 ft vit base patch16 0.91 0.91 0.90 0.88 0.84 0.84 0.87 0.01 0.03 0.07 0.04 0.03
dinov2 vit small patch14 0.92 0.92 0.91 0.89 0.86 0.81 0.89 0.01 0.03 0.06 0.11 0.04
dinov2 vit small patch14 reg 0.93 0.93 0.92 0.9 0.87 0.81 0.89 0.01 0.03 0.06 0.11 0.04
dinov2 vit base patch14 0.91 0.91 0.91 0.89 0.87 0.82 0.89 0.00 0.02 0.04 0.09 0.02
dinov2 vit base patch14 reg 0.92 0.92 0.92 0.9 0.88 0.84 0.9 0.00 0.02 0.04 0.08 0.02
dinov2 vit large patch14 0.92 0.92 0.92 0.91 0.89 0.86 0.9 0.00 0.01 0.03 0.06 0.02
dinov2 vit large patch14 reg 0.92 0.92 0.91 0.91 0.89 0.86 0.9 0.00 0.01 0.03 0.06 0.02
dinov2 vit giant patch14 0.91 0.91 0.91 0.9 0.88 0.84 0.89 0.00 0.01 0.04 0.07 0.02
dinov2 vit giant patch14 reg 0.92 0.92 0.91 0.9 0.88 0.85 0.9 0.00 0.01 0.03 0.07 0.02
mae vit base patch16 0.92 0.92 0.91 0.88 0.84 0.78 0.88 0.01 0.04 0.08 0.14 0.05
mae vit huge patch14 0.93 0.93 0.92 0.9 0.88 0.84 0.9 0.01 0.03 0.05 0.1 0.03
mae vit large patch16 0.93 0.92 0.92 0.9 0.87 0.83 0.9 0.01 0.03 0.05 0.1 0.03
mocov3 vit base patch16 0.92 0.92 0.91 0.88 0.85 0.79 0.88 0.01 0.03 0.07 0.13 0.04
resnet18.a1 in1k 0.9 0.9 0.88 0.85 0.8 0.72 0.84 0.02 0.05 0.1 0.19 0.06
resnet34.a1 in1k 0.91 0.91 0.9 0.86 0.82 0.75 0.86 0.01 0.05 0.09 0.17 0.05
resnet50.a1 in1k 0.91 0.9 0.89 0.85 0.8 0.72 0.85 0.02 0.06 0.11 0.18 0.06
resnet101.a1 in1k 0.9 0.9 0.88 0.85 0.8 0.73 0.84 0.02 0.05 0.1 0.17 0.06
resnet152.a1 in1k 0.89 0.89 0.88 0.85 0.8 0.73 0.84 0.01 0.04 0.09 0.16 0.05
vit base patch16 224.augreg in1k 0.87 0.87 0.86 0.82 0.77 0.69 0.81 0.01 0.05 0.1 0.18 0.06
vit base patch16 224.augreg in21k ft in1k 0.9 0.9 0.89 0.86 0.82 0.75 0.85 0.01 0.04 0.08 0.15 0.05
vit base patch16 clip 224.openai ft in1k 0.93 0.93 0.92 0.91 0.89 0.86 0.91 0.01 0.02 0.04 0.08 0.03
vssm base v0 0.91 0.91 0.91 0.89 0.85 0.80 0.88 0.01 0.03 0.06 0.11 0.04
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Figure 10. Accuracy drops of various architectures for all
shifts. We present the accuracy drops for all shifts in our bench-
mark. The performance gaps vary for different shifts and scales.

G. Implementation Details

In this section, we provide more implementation details
about the dataset generation process.

G.1. Implementation Details for Image Generation

We use the standard diffusers [61] pipeline for Stable Dif-
fusion 2.0, the DDIM [54] sampler with 100 steps and a
guidance scale of 7.5, seeds ranging from 1 to 50.
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Figure 11. Accuracy drops with confidence intervals. The ac-
curacy drops are depicted for the three shifts along the model axes
including the one-sigma confidence interval of the accuracy com-
putation. The results show that some ranking changes are statisti-
cally stable.
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Figure 12. Robustness evaluation for ResNet model family. We
compute the accuracy drops for all scales when varying the model
size for a set of ResNet models. Larger models result in a better
OOD robustness.

G.2. Implementation Details for Benchmarking

We integrate our new benchmark and additional models in
the easyrobust [40] framework.
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Figure 13. Failure point distributions for all shifts. We present
the failure point distributions for all shifts in our benchmark. The
failure point distributions vary for different shifts, quantifying the
different ways the shifts influence model performance.
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(a) Accuracies for heavy snow.
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(b) Accuracies for cartoon style.

Figure 14. Comparison of DiT classifier. We report the OOD
accuracies for two shifts for the DiT classifier [33] and discrim-
inative classifiers. All models were trained on ImageNet-1k and
are evaluated on the same subset of our benchmark. The diffusion
classifier performs worse than the discriminative models.
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Figure 15. Classification accuracy on the labeled dataset for
snow and cartoon shifts. The accuracy drops on the labeled
dataset showcase that various classifiers have varying sensitivities
on different shifts.

Table 6. ImageNet-R performance after fine-tuning on our
benchmark data.ImageNet-R accuracy of the original ResNet-50
without fine-tuning and our model, fine-tuned on our benchmark.

Evaluation Dataset wo/ fine-tuning w/ fine-tuning

IN/val 80.15 78.11
IN/R 27.34 37.57
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Figure 16. Accuracy drops for three ImageNet-C corruptions
and various architectures. The model rankings change for dif-
ferent corruptions, underlining the importance of the selection of
the corruption types or nuisance shifts for benchmarking the OOD
robustness. Additionally, it can also be observed that the accuracy
drops at varying rates for different shifts.
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Figure 17. Accuracy drops for contrast corruption. We report
the accuracy drops for seven severities of the contrast corruption,
as defined in [24]. The model rankings change for different scales.

Figure 18. Illustration of difference between ImageNet-C and
CNS. While ImageNet-C analyzes only synthetic shifts, CNS cap-
ture real-world distribution shifts..

Figure 19. ImageNet-R examples. Example images of one class
where the shape and perspective significantly change.

G.3. Details about the Used Compute
We used the internal cluster consisting of NVIDIA A40,
A100, and RTX 8000 GPUs for running most of the experi-
ments. Small-scale experiments are conducted on worksta-
tions equipped with RTX 3090. Training one LoRA adapter
requires 1 to 2 hours depending on the used GPU, gen-
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Figure 20. Slope of ID and OOD accuracies. We report the slope
computed for 16 ImageNet-trained models.
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Figure 21. p-values of the linear regressions corresponding to the
plot in Fig. 20: The p-value is smaller than 0.05 for most scales
and shifts, providing evidence for the statistical significance of our
statements.
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Figure 22. We report the linear correlation coefficients between ID
and OOD accuracy using 16 supervised ImageNet-trained models
for all evaluated shifts. The relation varies for different shifts and
scales between 0.5 and 2.5.
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Figure 23. Linear fits of the ID and OOD accuracies. We plot
example linear fits of ID and OOD accuracies for the graffiti style.
It can be observed that the slope increases for a larger scale.

erating the images for one shift and class with 50 seeds
and 6 scales requires 10 to 20 minutes. Thus, the training
of the 1400 LoRA adapters took around 2000 GPU hours
and the generation of the images around 350 GPU hours.
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Figure 24. Accuracy gains of models along the architecture
axis. We plot the accuracy gains averaged over all shifts after cor-
recting for the effect of the ID-OOD accuracy slope. These gains
are computed by substracting the effect of the linear fit (consider
Fig. 23 for an example) from the OOD accuracies. After that cor-
rection, ConvNext performs better than DeiT3.

Table 7. ImageNet validation accuracies and parameter count.
One the left, we plot model accuracies on the ImageNet validation
dataset for all evaluated classifiers. On the right, we present the
parameter counts for the used architectures.

Model IN/val

clip resnet101 58.00
clip resnet50 55.00
clip vit base patch16 224 67.70
clip vit base patch32 224 62.60
clip vit large patch14 224 75.00
clip vit large patch14 336 76.30
convnext base.fb in1k 83.80
convnext large.fb in1k 84.30
convnext small.fb in1k 83.10
convnext tiny.fb in1k 82.10
convnextv2 base.fcmae ft in1k 84.90
convnextv2 huge.fcmae ft in1k 86.20
convnextv2 large.fcmae ft in1k 85.80
deit3 base patch16 224.fb in1k 83.70
deit3 huge patch14 224.fb in1k 85.10
deit3 large patch16 224.fb in1k 84.60
deit3 medium patch16 224.fb in1k 82.90
deit3 small patch16 224.fb in1k 81.30
deit base patch16 224.fb in1k 81.80
dino lp vit base patch16 78.10
dino v1 vit base patch16 82.49
dinov2 vit base patch14 84.50
dinov2 vit base patch14 reg 84.60
dinov2 vit giant patch14 86.60
dinov2 vit giant patch14 reg 87.10
dinov2 vit large patch14 86.40
dinov2 vit large patch14 reg 86.70
dinov2 vit small patch14 81.40
dinov2 vit small patch14 reg 80.90
mae vit base patch16 83.70
mae vit huge patch14 86.90
mae vit large patch16 86.00
mocov3 vit base patch16 83.20
resnet101.a1 in1k 81.30
resnet152.a1 in1k 81.70
resnet18.a1 in1k 71.50
resnet34.a1 in1k 76.40
resnet50.a1 in1k 80.20
vit base patch16 224.augreg in1k 76.80
vit base patch16 224.augreg in21k ft in1k 77.70
vit base patch16 clip 224.openai ft in1k 85.20

Model Number of parameters (in M)

convnext tiny 29
convnext small 50
convnext base 89
convnext large 198
convnextv2 base 89
convnextv2 huge 660
convnextv2 large 198
deit3 small 22
deit3 medium 39
deit3 base 87
deit3 huge 632
deit3 large 304
deit base 87
vit base 87
vit huge 632
vit large 307
resnet18 12
resnet34 22
resnet50 26
resnet101 45
resnet152 60

Benchmarking all models using easyrobust required around
1000 GPU hours. The experiments to perform classification
using the diffusion-classifier required around 4000 GPU
hours.
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(a) Accuracy over various scales.
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(b) Failure point distribution.

Figure 25. Ablation of the number of ImageNet classes. We
compare the accuracies and failure points averaged over the se-
lected 100 classes and all 1000 ImageNet classes for two shifts
(snow and cartoon style). We report the results with ResNet-50.
The results indicate that the initial accuracy estimate is overesti-
mated but the accuracy drops averaged over the two shifts are in
line. The failure point distribution is normalized.)

Figure 26. Examples for text-based continuous shift. The grad-
ual increase can be successful. However, we observe that it fails
for some classes (middle row) and is not always consistently in-
creasing (bottom row).

G.4. Effect of Reduced Number of Classes for
Benchmark Evaluation

We ablate how the number of classes influences the robust-
ness evaluations in Fig. 25. For a more efficient computa-
tion, we use the UniPCMultistepScheduler sampler
with 20 steps [72].

H. Design Choice for Text-Based Continuous
Shift

A naive approach for realizing continuous shifts involves
computing the difference between two corresponding CLIP
embeddings. We explored this strategy following the imple-
mentation of Baumann et al. [3], but we did not achieve ro-
bust nuisance shifts for the variety of classes we considered
and we present some examples in Fig. 26. We achieve rea-
sonable results for some classes (e.g., upper row). However,
we observed that the spatial structures sometimes changes
despite starting at later timesteps. We observed that the
naive approach is not very stable for some classes, result-
ing in OOD samples that do not represent realistic images
(e.g., middle row). Applying the delta in text-embedding
space also does not always result in a consistent increase of

Table 8. Statistics of filtering process. We report the number of
in-class samples after various filtering stages.

Scale Stage (i) Stage (ii) Stage (iii) Stage (iv)

0 4000 2966 2966 2966
0.5 4000 2966 2929 2955
1 4000 2966 2813 2906
1.5 4000 2966 2479 2740
2 4000 2966 2143 2498
2.5 4000 2966 1729 2110

the considered shift (e.g., lower row).
We evaluate whether our sliders always increase the

shift, as measured by the ∆ CLIP score. For this purpose,
we compute the ∆ CLIP scores when increasing the slider
scale by 0.5. Here, the CLIP shift alignment increases for
73% of all cases for scales s > 0 and averaged over all
shifts, demonstrating that increasing the slider weight re-
sults in a stronger severity of the desired shift.

I. Labeling

In this section, we provide more details about the labeling
dataset and strategy.

I.1. Details on the Creation of the Labeled Dataset
To select a filter for detecting out-of-class (OOC) samples,
we collected a manually labeled dataset. For this, we pur-
sued the following strategy: (i) In the first stage, 24k images
are generated for 20 seeds, 5 LoRA scales, and 2 shifts per
class for 100 random ImageNet classes in total. We select
two different shifts: One shift corresponds to a natural vari-
ation (snow), and the second shift corresponds to a style
shift (cartoon style). (ii) We aim to find OOC samples that
are due to the application of the LoRA adapters. Therefore,
we remove all images generated with a seed that results in
a generated image with low CLIP text-alignment or that is
not classified classified correctly even without the applica-
tion of LoRA adapters. After removing such images, the
labeling dataset consists of around 18k images. (iii) To re-
duce the labeling effort, we filter out all easy samples that
(1) are correctly classified by DINOv2-ViT-L [5, 45] with
a linear fine-tuned head and (2) one out of three classifiers
(ResNet-50, DeiT-B/16, or ViT-B/16). (3) Additionally, we
ensure a sufficiently high text alignment. (iv) The remain-
ing hard images are labeled by two human annotators.

Eeach annotator can choose from the labels ‘class’, ‘par-
tial class properties’, and ‘not class’, where the second op-
tion should be selected if the image partially includes some
characteristics of the class. An image is defined as an out-
of-class sample if at least one annotator considers the image
as an OOC sample. For the remaining samples, an image is



Figure 27. Screenshot of labeling tool. We plot a screenshot of
an example image as it appeared during our labeling.
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(a) Human labeling dataset.
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(b) Complete filtering dataset.

Figure 28. Statistics of labeling dataset. We report the number
of in-class, partially in-class, and out-of-class samples.

considered IC (in-class) if at least one annotator labeled the
image a clear sample of the corresponding class

For the pre-filtering strategy (ii) and for the selection of
easy samples (iii), we compute text-alignment using CLIP
score and we remove all samples that have a CLIP similarity
sCLIP-text-alignment > 24, which approximately includes 90%
of all ImageNet validation images [60]. We use the imple-
mentation in torchmetrics with VIT-B/16. After removing
the easy samples in step (iii), 2.7k images remain for la-
beling. We use the VIA annotation tool [12, 13] to create
the annotations. Each image is labeled by two humans. In
total, 14 graduate students are involved in the labeling pro-
cess. For all participants, we ensure sufficient motivation
and they receive detailed instructions on how to perform the
labeling (the full set of instructions is provided in Fig. 33).
We provide the filtering statistics in Tab. 8 and the statistics
of the labeled dataset in Fig. 28. An example screenshot of
the labeling tool is visualized in Fig. 27.

J. User Study
We perform a user study on the final dataset using the same
tooling as for the human labeling discussed in Appendix I
(iv). The user study includes 300 randomly sampled im-
ages from the benchmark and it is checked by two differ-
ent individuals. In total, the user study involved seven peo-
ple with different professions. 3 samples of our benchmark
were considered as out-of-class samples, resulting in a ratio
of 1% of failure cases with a margin of error of 0.5% for a

Table 9. User study shift realism. Distribution of images where
the shift is clearly identifiable.

Scale Unclear Clear

1.0 0.76 0.24
1.5 0.51 0.49
2.0 0.24 0.76
2.5 0.16 0.84

Figure 29. Combination of Sliders. We exemplarily show that
sliders can be combined. Here, a snow slider (vertical axis) and a
cartoon slider (horizontal axis) are linearly added for three scales.

one-sigma confidence level.
We also study when a shift is clearly visible and report

it in Tab. 9. Model performance is evaluated only for 030
seeds where all scales are valid.

K. Applications of Trained Sliders

We can combine various sliders by simply adding the corre-
sponding LoRA adapters. We show an example application
in Fig. 29.

L. OOD-CV Details

The Out-of-Distribution Benchmark for Robustness (OOD-
CV) dataset includes real-world OOD examples of 10 ob-
ject categories varying in terms of 5 nuisance factors: pose,
shape, context, texture, and weather.

Generation of images for synthetic OOD-CV We gen-
erate the images for the synthetic OOD-CV dataset using
a larger number of noise steps (85%) and more scales (be-
tween 0 and 3). The shift sliders for these classes appear
to be more robust potentially since these classes occur more
often in the dataset for training CLIP and Stable Diffusion.
We use SD2.0 to generate the images.



Table 10. OOD-CV Statistics. We report the number of images
and accuracies for the weather subset.

Shift #images Accuracy

Snow 273 70.3
Fog 24 62.5
Rain 74 66.2
Unknown 129 66.7
Total 500 68.4

Training subset The OOD-CV benchmark provides a
training subset of 8627 images. We train various classi-
fiers (i.e., ResNet-50 [21], ViT-B/16 [10], and DINO-v2-
ViT [45]) for classification. We finetune each baseline dur-
ing 50 epochs with an early stopping set to 5 epochs. We
apply standard data augmentations such as scale, rotation,
and flipping during training. The training subset is com-
posed of images originating from different datasets, notably
ImageNet [8] and Pascal-VOC [15]. It is important to notice
that the distribution of these two subsets is slightly differ-
ent, with a higher data quality for the ImageNet subset and
a lower quality for the latter subset (more noise, smaller ob-
jects, different image sizes). We visualize a few examples
of the training data in Fig. 32.

Test subset annotations In the test subset provided in the
benchmark dataset, only the coarse individual nuisance fac-
tors (e.g., weather, texture) are provided. In our setup, we
are interested in studying more fine-grained nuisance shifts,
notably rain, snow, or fog. Hence, we had to assign some
fine-grained annotation to all images containing weather
nuisance shifts. Hence, we assign a fine-grained annotation
by computing the CLIP similarity to the following texts:
“a picture of a class in shift”, where class is the
ground truth class and shift the nuisance shift candidate
rain, snow, or fog and “a picture of a class without snow
nor fog nor rain”. By applying a softmax on the similar-
ity scores with the previous texts, we can assign the fine-
grained nuisance shift rain, snow, fog or unknown for each
image. We show more statistics in Tab. 10. By checking the
results visually, we observe that all fine-grained nuisance
shifts align with human perception and have a tendency to-
wards classifying samples as unknown as soon as there is a
small doubt. Note that by applying the same strategies to
our generated data, we obtain an accuracy close to 100%.

Nearest neighbor images of OOD-CV and CNS-Bench.
To illustrate the realism of our generated image, we com-
pute the nearest neighbours using cosine similarity with
CLIP image embedding and we plot it in Fig. 31.

Failure point distribution for CNS-Bench (OOD-CV)
Fig. 30 depicts the failure distribution for the three shifts.
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Figure 30. Failure point distribution of a ResNet-50 classifier
on our continuous OOD-CV benchmark. Our benchmark al-
lows computing the failure distribution of failure points, allowing
the analysis of when classifiers tend to fail, which was not possible
using the manually labeled images.



Figure 31. Closest synthetic samples to two example OOD-CV images. We find the top-5 nearest neighbours using cosine similarity
with CLIP image embedding.



(a) Train, ImageNet. (b) Train, ImageNet. (c) Train, ImageNet. (d) Train, ImageNet.

(e) Train, Pascal-VOC. (f) Train, Pascal-VOC. (g) Train, Pascal-VOC. (h) Train, Pascal-VOC.

(i) Test, snow shift. (j) Test, snow shift. (k) Test, snow shift. (l) Test, rain shift.

Figure 32. OOD-CV example images. We illustrate a set of example images from the training and the testing dataset of OOD-CV:
(a-h) example from the training set, from ImageNet or Pascal-VOC. (i-l) Some examples for weather nuisance shifts. In the training set,
we observe that images from the Pascal-VOC subset are usually of lower quality (e.g., cropping, occlusion, resolution) compared to the
ImageNet subset. In the test set, we see that they are not fully disentangled (e.g., (j) is only partially visible, (k) is partially occluded).



Figure 33. Set of instructions for labeling. Instructions provided to the human annotators to perform the labeling of the out-of-class
filtering dataset.



(a) Style of a tattoo.

(b) Cartoon style.

(c) Style of a video game.

(d) Graffiti style.

(e) Painting style.

(f) Pencil sketch style.

(g) Plush toy style.

(h) Design of a sculpture.

Figure 34. Example sliding for various nuisance shifts. We visualize six generated images with the corresponding scales as 0, 0.5, 1,
1.5, 2, and 2.5.



(a) In heavy snow.

(b) In a sandstorm.

(c) In dust.

(d) In smog.

(e) In fog.

(f) In heavy rain.

Figure 35. Example sliding for various nuisance shifts. We visualize six generated images with the corresponding scales as 0, 0.5, 1,
1.5, 2, and 2.5.



M. Datasheet

In the following, we answer the questions as proposed in
Gebru et al. [19].

M.1. Motivation
For what purpose was the dataset created? Was there a
specific task in mind? Was there a specific gap that needed to be filled?
Please provide a description.

The dataset was created to evaluate the robustness of
state-of-the-art models to specific continuous nuisance
shifts. Current approaches are not scalable and often
include only a small variety of nuisance shifts, which are
not always relevant in the real world. More importantly,
current benchmark datasets define binary nuisance shifts
by considering the existence or absence of that shift, which
may contradict their continuous realization in real-world
scenarios.

Who created the dataset (e.g., which team, research
group) and on behalf of which entity (e.g., company,
institution, organization)?

The paper was created by the authors of the CNS-Bench
paper, which are affiliated with the listed organizations.

Who funded the creation of the dataset? If there is
an associated grant, please provide the name of the grantor and the grant
name and number.

The creation was funded by by the German Science
Foundation (DFG) under Grant No. 468670075.

M.2. Composition
What do the instances that comprise the dataset repre-
sent (e.g., documents, photos, people, countries)?

The dataset consists of synthetic images that were
generated using Stable Diffusion.

How many instances are there in total (of each
type, if appropriate)?

The dataset contains 192, 168 images in total, with
32, 028 for each of the six scales with 14 shifts. Each shift
has at least 5, 000 images and 100 classes.

Does the dataset contain all possible instances or is
it a sample (not necessarily random) of instances from
a larger set? If the dataset is a sample, then what is the larger set? Is
the sample representative of the larger set (e.g., geographic coverage)? If
so, please describe how this representativeness was validated/verified. If
it is not representative of the larger set, please describe why not (e.g., to
cover a more diverse range of instances because instances were withheld
or unavailable).

The dataset contains the subset of images that were
filtered using the selected filtering strategy. Originally,
420, 000 images were generated.

What data does each instance consist of? “Raw”
data (e.g., unprocessed text or images) or features? In
either case, please provide a description.

“Raw” synthetically generated data as described in the
paper.

Is there a label or target associated with each in-
stance? If so, please provide a description.

Yes, each image belongs to an ImageNet class and has a
shift scale assigned to it.

Is any information missing from individual instances?
If so, please provide a description, explaining why this information
is missing (e.g., because it was unavailable). This does not include
intentionally removed information, but might include, e.g., redacted text.

No, for each instance, we give the class label, the shift
and its scale, and the parameters used for generating this
image. However, the class label might be erroneous in
rare cases where the generated image corresponds to an
out-of-class sample.

Are relationships between individual instances made
explicit (e.g., users with their tweets, songs with their
lyrics, nodes with edges)? If so, please describe how these
relationships are made explicit.

Yes, the relationships in terms of class, random seed
for generation, shift, and scale of shift are provided in the
dataset.

Are there recommended data splits (e.g., training,
development/validation, testing)? If so, please provide a
description of these splits, explaining the rationale behind them.

We offer a benchmark dataset specifically intended
for testing the robustness of classifiers. Therefore, we
recommend utilizing the entire dataset provided as the test
dataset.

Are there any errors, sources of noise, or redundancies
in the dataset? If so, please provide a description.

We provided a dataset of generated images. While we
apply a filtering strategy to reduce the number of out-of-
class and unrealistic samples, we cannot guarantee that
all images of the dataset represent a realistic and visually
appealing realization of the considered class. We provide a
statistical estimate of the number of failure samples in the
paper. The data might also include the redundancies that
underlie the image generation process of Stable Diffusion.

Is the dataset self-contained, or does it link to or



otherwise rely on external resources (e.g., websites,
tweets, other datasets)? If it links to or relies on external
resources, a) are there guarantees that they will exist, and remain constant,
over time; b) are there official archival versions of the complete dataset
(i.e., including the external resources as they existed at the time the dataset
was created); c) are there any restrictions (e.g., licenses, fees) associated
with the use of these external resources?

The dataset is fully self-contained.

Does the dataset contain data that might be con-
sidered confidential (e.g., data that is protected by
legal privilege or by doctor–patient confidentiality, data
that includes the content of individuals’ non-public
communications)? If so, please provide a description.

No.

Does the dataset contain data that, if viewed di-
rectly, might be offensive, insulting, threatening, or
might otherwise cause anxiety? If so, please describe why.

There is a small chance that our synthetically generated
data can generate offensive images. However, we did not
encounter any such sample during our extensive manual
annotations.

Does the dataset relate to people? If not, you may
skip the remaining questions in this section.

No.

Does the dataset identify any subpopulations (e.g.,
by age, gender)? If so, please describe how these subpopulations are
identified and provide a description of their respective distributions within
the dataset.

N/A.

Is it possible to identify individuals (i.e., one or
more natural persons), either directly or indirectly (i.e.,
in combination with other data) from the dataset? If so,
please describe how.

N/A.

Does the dataset contain data on individuals’ pro-
tected characteristics (e.g., age, gender, race, religion,
sexual orientation)? If so, please describe this data and how it was
obtained.

N/A.

Does the dataset contain data on individuals’ criminal
history or other behaviors that would typically be
considered sensitive or confidential? If so, please describe this
data and how it was obtained.

N/A.

M.3. Collection Process
How was the data associated with each instance ac-
quired? Was the data directly observable (e.g., raw text,
movie ratings), reported by subjects (e.g., survey re-
sponses), or indirectly inferred/derived from other data
(e.g., part-of-speech tags, model-based guesses)?

N/A.

What mechanisms or procedures were used to col-
lect the data (e.g., hardware apparatus or sensor,
manual human curation, software program, software
API)? How were these mechanisms or procedures
validated?

We used Stable Diffusion 2.0 to generate all images.
Images were generated using NVIDIA A100 and A40
GPUs.

If the dataset is a sample from a larger set, what
was the sampling strategy (e.g., deterministic, proba-
bilistic with specific sampling probabilities)?

The dataset was filtered using a combinatorial selection
approach using the alignment scores of DINOv2 and CLIP
to the considered class.

Who was involved in the data collection process (e.g.,
students, crowdworkers, contractors) and how were
they compensated (e.g., how much were crowdworkers
paid)?

The authors of the paper and other PhD students of the
institute. They were not additionally paid for the dataset
collection process.

Over what timeframe was the data collected? Does this
timeframe match the creation timeframe of the data
associated with the instances (e.g., recent crawl of old
news articles)? If not, please describe the timeframe in which the
data associated with the instances was created.

The images were generated and processed over a
timeframe of four weeks.

Were any ethical review processes conducted (e.g.,
by an institutional review board)? If so, please provide a
description of these review processes, including the outcomes, as well as a
link or other access point to any supporting documentation.

No ethical concerns.

M.4. Preprocessing/cleaning/labeling
Was any preprocessing/cleaning/labeling of the data
done (e.g., discretization or bucketing, tokenization,
part-of-speech tagging, SIFT feature extraction, re-
moval of instances, processing of missing values)? If so,



please provide a description. If not, you may skip the remaining questions
in this section.

Yes, cleaning of the generated data was conducted.
The generated images underwent filtering to reduce the
number of out-of-class samples using the proposed filtering
mechanisms. Instances that did not meet these criteria were
removed from the dataset. For a detailed description of the
filtering process, please refer to the corresponding section
in the paper.

Was the “raw” data saved in addition to the pre-
processed/cleaned/labeled data (e.g., to support unan-
ticipated future uses)? If so, please provide a link or other access
point to the “raw” data.

The generated images remain in their original, unpro-
cessed state and can be considered as “raw” data. However,
we have not provided all the images that were filtered out.

Is the software used to preprocess/clean/label the
instances available? If so, please provide a link or other access
point.

Generating the images was performed using commonly
available Python libraries. For annotating a subset of
the dataset for filtering purposes, we have used the VIA
annotation tool [12, 13].

M.5. Uses
Has the dataset been used for any tasks already? If so,
please provide a description.

In our work, we demonstrate how this approach yields
valuable insights into the robustness of state-of-the-art
models, particularly in the context of classification tasks.

Is there a repository that links to any or all papers
or systems that use the dataset? If so, please provide a link or
other access point.

The relevant links can be acquired via the project page
https://genintel.github.io/CNS.

What (other) tasks could the dataset be used for?

Our work showcases the capability of our dataset to
enhance control over data generation, which is particularly
evident through continuous shifts. However, its appli-
cability extends beyond this demonstration. The dataset
can be effectively utilized in various generation tasks
that necessitate continuous parameter control. While we
showcased its efficacy in providing insights for models
tackling classification tasks, it can seamlessly extend to
evaluate the robustness of state-of-the-art methods across
diverse tasks such as segmentation, domain adaptation,

and many others. This is possible by combining our
approach with other modes of conditioning Stable Diffu-
sion. In addition, our data can also be used for fine-tuning,
which we also demonstrated in the supplementary material.

Is there anything about the composition of the dataset
or the way it was collected and cleaned that might
impact future uses? For example, is there anything that
might cause the dataset to be used inappropriately or
misinterpreted (e.g., accidentally incorporating biases,
reinforcing stereotypes)?

Our dataset was synthesized using a generative model.
It, therefore, likely inherits any biases for its generator.
Similarly, filtering is performed by pre-trained models,
which can indirectly also contribute to biases.

Are there tasks for which the dataset should not
be used? If so, please provide a description.

No, there are no tasks for which the dataset should not
be used. Our dataset aims to enhance model robustness
and provide deeper insights during model evaluation.
Therefore, we see no reason to restrict its usage.

M.6. Distribution
Will the dataset be distributed to third parties outside
of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created? If so, please provide
a description.

Yes, the dataset will be publicly available on the internet.

How will the dataset be distributed (e.g., tarball
on website, API, GitHub)? Does the dataset have a
digital object identifier (DOI)?

The dataset will be distributed as archive files on our
servers.

When will the dataset be distributed?
The dataset will be distributed upon acceptance of the

manuscript.

Will the dataset be distributed under a copyright
or other intellectual property (IP) license, and/or under
applicable terms of use (ToU)? If so, please describe this license
and/or ToU, and provide a link or other access point to, or otherwise
reproduce, any relevant licensing terms or ToU.

CC-BY-4.0.

Have any third parties imposed IP-based or other
restrictions on the data associated with the instances? If
so, please describe these restrictions, and provide a link or other access

https://genintel.github.io/CNS


point to, or otherwise reproduce, any relevant licensing terms.

No, there are no IP-based or other restrictions on the
data associated with the instances imposed by third parties.

Do any export controls or other regulatory restric-
tions apply to the dataset or to individual instances? If
so, please describe these restrictions, and provide a link or other access
point to, or otherwise reproduce, any supporting documentation.

We are not aware of any export controls or other regu-
latory restrictions that apply to the dataset or to individual
instances.

M.7. Maintenance
Who is supporting/hosting/maintaining the dataset?

The dataset is supported by the authors and their asso-
ciated research groups. The dataset is hosted on our own
servers.

How can the owner/curator/manager of the dataset
be contacted (e.g., email address)?

The authors of this dataset will be reachable at their
e-mail addresses.

Is there an erratum? If so, please provide a link or other
access point.

If errors are found, an erratum will be added to the
website.

Will the dataset be updated (e.g., to correct label-
ing errors, add new instances, delete instances)? If so,
please describe how often, when, and how updates will be provided.

Yes, updates will be communicated via the website. The
dataset will be versioned.

If the dataset relates to people, are there applica-
ble limits on the retention of the data associated with
the instances (e.g., were individuals in question told that
their data would be retained for a specific period of time
and then deleted)? If so, please describe these limits and explain
how they will be enforced.

Our dataset does not relate to people.

Will older versions of the dataset continue to be
supported/hosted/maintained? If so, please describe how.

No, older versions of the dataset will not be supported if
the dataset is updated. We do not plan to extend or update
the dataset. Any updates will be made solely to correct any
hypothetical errors that may be discovered.

If others want to extend/augment/build on/contribute to

the dataset, is there a mechanism for them to do so? If
so, please provide a description. Will these contributions be made publicly
available?

Yes, we provide all the necessary tools and explanations
to enable users to build continuous shifts for their own
specific applications. Our dataset serves as a foundation to
evaluate various classifiers. We encourage to build on top
of this work and we are happy to link relevant works via
our GitHub page.

M.8. Author Statement of Responsibility
The authors confirm all responsibility in case of violation
of rights and confirm the license associated with the dataset
and its images.


