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Supplementary Material

In this appendix, we present additional motivations, de-
tails, and results regarding our benchmark study.

We emphasize that the goal of this paper is not to develop
new tracking methods for FPV but to enhance understand-
ing of the task of object tracking in FPV. We aim to provide
deeper insights that can better guide the future development
of object tracking algorithms.

A. Details on the VISTA Benchmark
A.1. Background
Previous VOT and VOS benchmarking studies in egocen-
tric vision have employed the following method to quan-
tify the performance of a tracking algorithm. They con-
sidered an annotated video as a pair V = (F ,A) where
F = {Ft}T−1

t=0 and A = {At}T−1
t=0 are, respectively, a se-

quence of T RGB frames Ft, and a sequence of T annota-
tions At in the form of bounding-boxes bt [10, 49] or seg-
mentation masks Mt [6]. Annotations are provided for all
or a subset of the frames, in the latter case At = ∅ for some
t. The evaluation protocol used first initialized the tracker
using the first frame F0 and its corresponding annotation
A0. Then, the tracker was run on all subsequent frames
Ft, t > 0, producing a set of predictions P = {Pt}T−1

t=1 rep-
resented as boxes b̂t or masks M̂t. This protocol, adopted
from popular VOT and VOS benchmarks, is defined as the
one-pass evaluation (OPE) protocol in VOT [53, 54] and as
semi-supervised evaluation in VOS [43]. To obtain a score
expressing the quality of the behavior of the algorithm, the
predictions were compared to the ground-truth annotations
using a scoring function σ

(
{Pt}T−1

t=1 , {At}T−1
t=1

)
. This pro-

cess was repeated across multiple sequences, and the scores
were averaged to produce a single metric that quantifies the
algorithm’s overall performance [6, 10, 49].

The benchmarking efforts employing this schema [6, 10,
49] compared the obtained scores with those achieved with
the same protocol on established VOT and VOS bench-
marks [13, 26, 43, 53, 55], highlighting a performance de-
cline used to claim that FPV is more challenging than TPV.
However, this comparison has several limitations. The over-
all scores come from different data domains, leading to in-
consistencies due to differences in object categories and
behaviors, sequence lengths, annotation rates, and dataset
sizes. Additionally, training sets for training tracking mod-
els were drawn from mismatched data distributions. These
factors can obscure the true impact of the FPV viewpoint
and potentially mislead conclusions about VOTS algorithm
performance in egocentric vision. It is worth mentioning
that these issues may affect any benchmark dataset that dif-

fers significantly from established ones. In this paper, we
specifically focus on egocentric FPV because it was often
claimed to be particularly challenging.

A.2. Single Object Tracking
In this paper, we focus on tracking a single object per video.
This choice to restrict the analysis to a single object is to
obtain a more detailed examination of the key challenges
and factors affecting FPV and TPV tracking. This approach
ensures that the evaluation remains unaffected by the com-
plexities introduced by multi-object interactions. Future
work could explore multi-object tracking (MOT) evalua-
tion approaches [34] to achieve a more comprehensive un-
derstanding of the impact of FPV and TPV on MOT algo-
rithms. We believe that the insights provided in this study
will be valuable for the development an benchmarking of
such methods in FPV and TPV.

A.3. Online Evaluation and Initialization
In designing SOPE, we adhere to the OPE [54] and semi-
supervised protocols [43], which process video frames se-
quentially in an online manner. This ensures fair com-
parison with previous benchmark studies [6, 10, 49] while
also reflecting real-world scenarios where VOTS algorithms
must operate in real-time, processing streaming video from
wearable cameras for timely video understanding and user
assistance.

For tracker initialization in SOPE, we follow again the
OPE [54] and semi-supervised protocols [43], where the
target is initialized in the first frame of the sequence. While
user-provided initialization is less common in egocentric vi-
sion, prior work [10, 14, 37] has shown that visual track-
ers can be initialized by object detectors in the context of
tracking-based downstream tasks. Thus, SOPE’s standard
initialization—using the target’s first appearance and ini-
tial localization in the two views—remains relevant with
respect to the real-world usage of a tracker.

A.4. Video Collection
The video sequences in the VISTA benchmark were se-
lected from the EgoExo4D dataset [16], which is currently
the largest resource for studying and developing human ac-
tivity understanding algorithms from synchronized egocen-
tric (FPV) and exocentric (TPV) point of views. It con-
tains 1,422 hours of video featuring diverse activities such
as sports, music, dance, and bike repair, collected from
over 800 participants across 13 cities worldwide. Object
categories relate to the activities performed in the videos
and include kitchen tools, working tools, appliances, sport



Figure 8. Object categories represented in VISTA. This word-
cloud visualizes the categories and the frequency of the target ob-
jects available in our benchmarks’s training and test sets.

equipment, kit parts, etc. The VISTA dataset consists of 6
human-object activities — bike repair, cooking, basketball,
cardiopulmonary resuscitation, COVID testing, and soccer
— featuring circa 285 distinct object categories (see Fig.
8). The videos are captured by 181 unique camera wearers
in 53 different environments across 12 institutions. Ego-
Exo4D’s extensive coverage makes it a unique dataset, cap-
turing a wide range of real-world scenarios with different
individuals and various object types from both FPV and
TPV perspectives. This diversity allowed us to curate a set
of FPV and TPV tracking sequences that accurately reflect
real-world application scenarios.

The FPV videos in Ego-Exo4D are recorded using Aria
smart glasses [12], equipped with an 8 MP RGB camera
capturing frames at a resolution of 1408 × 1408. For TPV
perspectives, multiple stationary GoPro cameras are used,
producing landscape videos with a resolution of 1920 ×
1280. The placement and number of these exocentric cam-
eras vary per scenario to ensure optimal coverage without
obstructing participants’ activities [16]. In each FPV-TPV
pair, we select the TPV view that was originally annotated
with object tracks in Ego-Exo4D, as it provides the clearest
observation of the scene [16]. To optimize storage, we per-
formed experiments by resizing FPV frames to 720 × 720
and TPV frames to 1280× 720.

A.5. Bounding-box Annotations
The ground-truth axis-aligned bounding-box annotations
{bpov

t }T−1
t=0 for each FPV-TPV video in VISTA are derived

by determining the minimum and maximum x, y coordi-
nates of the positive pixels in the corresponding segmen-
tation masks {Mpov

t }T−1
t=0 .

A.6. Frame Attributes
The sequences have been annotated with 12 attributes that
characterize motion and visual appearance changes affect-
ing the target object. These attributes help analyze tracker
performance under various conditions that may impact its

behavior. Each attribute has been assigned on a per-
frame basis to enable a more robust evaluation, follow-
ing the approach in [24]. They have been selected from
commonly used attributes in previous tracking benchmarks
[13, 20, 24, 54] to ensure they capture scenarios relevant to
both FPV and TPV videos. Following [13, 20, 24], the at-
tributes were initially assigned using an automatic approach
and later verified by our research team, consisting of two
postdoctoral researchers and a full professor with expertise
in visual tracking. Below, we describe the characteristics
each attribute represents. The procedures outlined are ap-
plied independently to the FPV and TPV sequences.

• Scale Variation (SV). A scale variation in the object’s
appearance occurs if the ratio of the bounding-box area
between the first and the current frame falls outside the
range [0.5, 2] [13, 54].

• Aspect Ratio Change (ARC). An aspect ratio change oc-
curs if the ratio of the bounding-box aspect ratio between
the first and the current frame falls outside the range [0.5,
2] [13, 54].

• Illumination Variation (IV). Illumination variation occurs
if the target’s bounding-box is subject to significant light
changes. The degree of illumination variation in each
frame is measured by the change in average color between
the first and the current target patch, following [20]. A
threshold of 0.15 is used to determine illumination varia-
tion.

• Distractors (DIS). A frame contains distractors if it in-
cludes objects similar to the target, either from the same
category or with a visually similar appearance. To iden-
tify distractors, we run a SAM2 instance [47] on each
frame using a dense grid of point prompts to extract can-
didate object positions. Each candidate is then verified
using DinoV2 [42] by computing the cosine similarity be-
tween its extracted features and those of the target crop
from the first frame. A candidate is considered a distrac-
tor if its cosine similarity exceeds 0.5 and its bounding-
box overlap with the ground-truth is below 0.5.

• Motion Blur (MB). Motion blur occurs when the target
region appears blurred due to object or camera motion.
Following [23, 24], we detect motion blur by computing
the variance of the Laplacian on the target patch in the
current frame. A threshold of 100 is used to determine
the presence of motion blur.

• Fast Motion (FM). Fast motion is detected when the target
bounding-box moves a distance greater than its own size
between consecutive frames [13]. This attribute is com-
puted by measuring the displacement of the bounding box
during periods of target visibility.

• Low Resolution (LR). The target patch is considered low
resolution if the area of the target bounding-box is smaller
than 322 pixels [32].



• Medium Resolution (MR). The target patch is considered
medium resolution if the area of the target bounding-box
is between 322 and 962 pixels [32].

• High Resolution (HR). The target patch is considered high
resolution if the area of the target bounding-box is larger
than 962 pixels [32].
In addition to these standard attributes, we computed the

following:

• Static Object (STA) and Moving Object (MOV). The ob-
ject is considered static in the current frame if it remains
in the same position relative to the previous frame. This is
determined by computing the IoU between the bounding-
box of the current and previous frame. If the IoU is above
0.5, the target object is labeled as static; otherwise, it
is labeled as moving. This information is computed us-
ing only the TPV view, leveraging the synchronization of
frames and annotations to assign the corresponding label
to the associated FPV frame. Since the TPV camera is
stationary, any change in annotation overlap during target
visibility periods is due to the motion of the object.

• Hand-Object Interaction (HOI). The target object is con-
sidered to be in interaction with a person’s hands. Fol-
lowing [10, 14], we compute this attribute by first run-
ning a hand-object interaction detector [48]. To deter-
mine whether the target object is being interacted with,
we check if its bounding-box overlaps with the detected
object bounding boxes by more than 0.5 IoU and if an
interaction state is detected for at least two consecutive
annotations (equivalent to a period of 1 second). Once an
interaction label is assigned, it remains active for all sub-
sequent frames until two consecutive overlaps fall below
0.5 with no interaction state detected [14]. This informa-
tion is computed using only the FPV view becuase the
egocentric viewpoint enables a closer view of the inter-
action between hands and objects [48]. We leverage the
synchronization of frames and annotations to assign the
corresponding label to the associated TPV frame.

A.7. Metrics
As shown in Eq. 1, we compute the mean signed difference
for each sequence, weight it by the annotation length, and
then average it across the sum of all the annotation lengths
[24]. We applied this weighting because we observed that
methods tend to perform better on short FPV videos. With-
out weighting, a high score from a short FPV sequence car-
ries the same influence as a low score from a long FPV se-
quence, which can mask the overall lower tracking accuracy
of longer videos. Conversely, algorithms tend to perform
better on long TPV videos. In this case, a long TPV se-
quence with limited object motion and a high score would
carry the same weight as a short TPV sequence with object
motion and poor performance, potentially overshadowing
the true performance trend. In Tab. 3, we report the differ-

ence in using or not using the weighting on the AUC, NPS,
and GSR metrics. Tab. 5 shows the impact of not having the
weighting as used by the standard VOS benchmark evalua-
tion [43, 55].

The same weighting strategy described before is applied
to the standard metrics reported in all tables and figures of
this paper, specifically AUC-pov, NPS-pov, or GSR-pov.
This is represented by the following equation:

spovσ =
1

ω0 + · · ·+ ωN−1

N−1∑
i=0

spovσ,i · ωi, ωi = |Apov
i | (2)

where spovσ,i represents the AUC, NPS, or GSR score for an
individual sequence.

We compute the sequence-wise scores spovσ,i for
bounding-box trackers by calculating the AUC, NPS, and
GSR based on the IoU between the predicted bounding-
boxes {b̂pov

t }T−1
t=1 and the ground-truth bounding-boxes

{bpov
t }T−1

t=1 . For trackers that output segmentation masks,
we compute the AUC, NPS, and GSR based on the IoU be-
tween the predicted segmentation masks {M̂pov

t }T−1
t=1 and

the ground-truth masks {Mpov
t }T−1

t=1 . This approach en-
sures a fair evaluation of the tracker’s predictions by com-
paring them to the ground-truth target state representation
that the tracker was optimized for.

In addition to the previously mentioned metric, Table 5
reports the scores J&F , J , and F , which are commonly
used for VOS evaluation. These scores were computed as
originally described in [43, 55]. As with the other metrics,
we calculate the mean signed differences ∆J&F ,∆J ,∆F
to quantify the performance differences between FPV and
TPV based on these metrics. For these segmentation-
oriented metrics, we convert the bounding-boxes predicted
by box-based trackers into segmentation masks by filling
the rectangular area within the bounding-box with positive
pixels [27, 28].

B. Details on the Evaluated Methods
For SAM2-based instances [47] (SAM2-B, SAM2-M,
SAMURAI, DAM4SAM), we used the SAM 2++ Hiera
Large instance. SAM2-B is a variant of SAM2 initialized
with a bounding box and producing bounding-box outputs.
For SAMURAI, we follow the running setup from the orig-
inal paper [58], initializing it with a bounding-box and re-
trieving output bounding-boxes from it.

In the following, we provide details about the viewpoint-
optimized tracking baselines mentioned in Sec. 4 of the
main paper. For STARK-T-FPV, we train the STARK-ST50
instance [56] starting from random weights on the FPV se-
quences of the DTRAIN in the VISTA benchmark. The train-
ing consists of 100 epochs in stage 1 and 10 epochs in
stage 2. Apart from the number of epochs, all other hy-
perparameters are kept fixed as originally proposed [56].



Table 3. Effect of score weighting by sequence length. This table shows how performance difference scores change when each sequence
score is weighted by its annotation length. We apply this weighting because trackers behave differently across the two viewpoints, and
unweighted scores from short or long videos can distort the true average performance.

AUC NPS GSRTracker Weight FPV TPV ∆AUC FPV TPV ∆NPS FPV TPV ∆GSR

✓ 51.9 44.2 7.7 54.0 45.6 8.4 11.3 28.7 -17.4
DDD STARK-F-FPV

✗ 54.0 43.7 10.3 56.0 45.1 10.9 21.3 33.7 -12.4

✓ 56.3 52.6 3.7 60.8 57.6 3.2 29.8 39.4 -9.6
DDD XMem-F-FPV

✗ 58.7 51.9 6.8 63.6 57.0 6.6 42.9 45.6 -2.7

✓ 61.7 65.8 -4.1 66.2 71.1 -4.9 35.2 52.9 -17.7⋇⋇⋇ DAM4SAM
✗ 64.4 63.5 0.9 69.6 69.0 0.6 47.3 57.6 -10.3

✓ 56.2 63.3 -7.1 58.3 65.6 -7.3 31.8 48.2 -16.4∗∗∗ SAMURAI
✗ 60.6 63.1 -2.5 63.1 65.3 -2.2 43.9 53.5 -9.6

✓ 42.2 51.7 -9.5 43.3 53.9 -10.6 7.9 33.0 -25.1
DDD STARK-F-TPV

✗ 44.5 50.6 -6.1 45.8 52.4 -6.6 16.7 37.7 -21.0

✓ 40.2 52.6 -12.4 45.7 58.5 -12.8 18.9 39.7 -20.8
DDD XMem-F-TPV

✗ 45.0 53.0 -8.0 50.8 59.0 -8.2 30.1 46.4 -16.3

For STARK-T-TPV, we use the same training configura-
tion, with the only change being the training set, which
consists of the TPV sequences from DTRAIN. For STARK-
T-FPV,TPV (row 4 of Tab. 2), we use the same training con-
figuration as described previously, with the only change be-
ing the training set, which includes both FPV and TPV se-
quences from DTRAIN. For STARK-F-FPV, STARK-F-TPV,
and STARK-F-FPV,TPV, we follow the same approach as
before, but start with pretrained model weights obtained af-
ter training for generic object tracking on the TrackingNet
[40], LaSOT [13], GOT-10k [20], and COCO [32] datasets.
The original code repository was used to implement all of
these procedures.2

For the XMem baseline, we follow a similar approach.
For XMem-T-FPV, we the ResNet50-based instance [3]
starting from weights pretrained on static images (stage 0)
on the FPV sequences of DTRAIN. The training kept all hy-
perparameters fixed as originally proposed [3]. For XMem-
T-TPV, we use the same training configuration, with the
only change being the training set, which consists of the
TPV sequences from DTRAIN. For XMem-T-FPV,TPV (row
of Tab. 2), we use the same training configuration as de-
scribed previously, with the only change being the train-
ing set, which includes both FPV and TPV sequences from
DTRAIN. For XMem-F-FPV, XMem-F-TPV, and XMem-F-
FPV,TPV, we follow the same approach as before, but start
with pretrained model weights obtained after training on
generic object VOS using the DAVIS [43], and YouTube-
VOS [55] datasets (stage 3). The original code repository

2https://github.com/researchmm/Stark

was used to implement all of these procedures.3

All the code used for this study was implemented in
Python and run on a machine with an Intel Xeon E5-2690
v4 @ 2.60 GHz CPU, 320 GB of RAM, and 6 NVIDIA
TITAN V GPUs.

C. Details and Additional Results
In all Figures and Tables in Sec. 5 of the main paper, unless
stated otherwise, results are based on the 544 pairs in DTEST
under the long-term object tracking setting.

Frame-based attribute evaluation. For experiments in-
volving frame-based attributes, scores are computed using
only frames labeled with the respective attribute. In these
cases, each sequence is weighted based on the number of
annotated frames containing the attribute of interest.

Long-term tracking scores. For improved readability,
the full version of the scores shown in brackets in Fig. 3
is provided in Tab. 4. Refer to Sec. 5 of the main paper for
a detailed discussion.

Details on experiments on the field’s of view impact. To
generate the results shown in Fig. 5 of the main paper, we
categorized each annotation based on its distance from the
frame center into four regions: (1) within 25% of the frame
width from the center, (2) between 25% and 50% of the
frame width, (3) between 50% and 75% of the frame width,

3https://github.com/hkchengrex/XMem

https://github.com/researchmm/Stark
https://github.com/hkchengrex/XMem


Table 4. Long-term object tracking performance across FPV and TPV. For a better readibility, this table reports the score presented in
Figure 3 (a). Light blue represents FPV bounding-box trackers; dark blue represents FPV segmentation trackers; light red represents TPV
bounding-box trackers; dark red represents TPV segmentation trackers; light green represents generic bounding-box trackers; dark green
represents generic segmentation trackers. Trackers are ordered in descending order by ∆AUC.

AUC NPS GSRTracker FPV TPV ∆AUC FPV TPV ∆NPS FPV TPV ∆GSR

777 STARK-T-FPV 49.8 38.4 11.4 51.8 39.4 12.4 10.9 24.8 -13.9
DDD STARK-F-FPV 51.9 44.2 7.7 54.0 45.6 8.4 11.3 28.7 -17.4
777 XMem-T-FPV 56.7 49.2 7.5 61.0 54.5 6.5 30.9 37.7 -6.8
DDD XMem-F-FPV 56.3 52.6 3.7 60.8 57.6 3.2 29.8 39.4 -9.6
▷◁▷◁▷◁ EgoSTARK 45.0 44.7 0.3 46.4 46.5 -0.1 10.0 29.7 -19.7
⋇⋇⋇ DAM4SAM 61.7 65.8 -4.1 66.2 71.1 -4.9 35.2 52.9 -17.7
⊗⊗⊗ TaMOs 34.5 39.0 -4.5 36.2 39.5 -3.3 10.6 26.8 -16.2
××× AOT 37.5 42.6 -5.1 38.7 43.4 -4.7 11.4 30.7 -19.3
⋄⋄⋄ OSTrack 43.7 49.2 -5.5 45.3 51.0 -5.7 10.2 31.3 -21.1
⋆⋆⋆ KeepTrack 34.5 40.5 -6.0 36.9 42.8 -5.9 8.5 29.0 -20.5
∗∗∗ SAMURAI 56.2 63.3 -7.1 58.3 65.6 -7.3 31.8 48.2 -16.4
▷◁▷◁▷◁ STARK 35.5 42.8 -7.3 36.6 44.6 -8.0 8.1 28.1 -20.0
◀◀◀ UNICORN-M 23.9 32.5 -8.6 28.4 40.4 -12.0 5.8 19.2 -13.4
⊞⊞⊞ XMem 37.1 45.9 -8.8 40.3 49.4 -9.1 17.8 35.2 -17.4
DDD STARK-F-TPV 42.2 51.7 -9.5 43.3 53.9 -10.6 7.9 33.0 -25.1
777 STARK-T-TPV 36.8 48.0 -11.2 38.0 50.0 -12.0 6.9 29.9 -23.0
DDD XMem-F-TPV 40.2 52.6 -12.4 45.7 58.5 -12.8 18.9 39.7 -20.8
▶▶▶ SAM2-M 45.7 58.8 -13.1 49.1 64.1 -15.0 24.0 47.9 -23.9
◦◦◦ SeqTrack 36.9 50.3 -13.4 39.0 52.8 -13.8 8.1 33.7 -25.6
••• ARTrackV2 32.4 46.0 -13.6 32.6 47.7 -15.1 7.5 33.9 -26.4
▶▶▶ SAM2-B 45.8 59.9 -14.1 47.9 62.8 -14.9 22.7 43.3 -20.6
◀◀◀ UNICORN-B 27.0 41.3 -14.3 28.1 42.1 -14.0 6.7 26.1 -19.4
◁◁◁ Cutie 30.6 46.6 -16.0 33.4 50.9 -17.5 15.6 36.4 -20.8
777 XMem-T-TPV 33.6 51.5 -17.9 37.8 56.9 -19.1 14.6 39.6 -25.0

and (4) beyond 75% of the frame width. The position of
each annotation was determined using the coordinates of its
barycenter. This clustering process was applied separately
to FPV and TPV. To compute the scores for each cluster, we
followed the same procedure used for frame attribute-based
evaluation. For FPV, each cluster contains 11% (25%), 33%
(25-50%), 30% (50-75%), 26% (75-100%) of the total an-
notated frames. For TPV, each cluster contains 14% (25%),
31% (25-50%), 26% (50-75%), 29% (75-100%) of the total
annotated frames.

VOS-based evaluation results. Tab. 5 presents the per-
formance scores of the selected trackers using the stan-
dard semi-supervised evaluation protocol, measured with
the J&F , J , and F metrics [43]. The J metric quantifies
the average overlap between the predicted and ground-truth
segmentation masks (similar to AUC), while F assesses the
quality of segmentation boundaries. The J&F metric is
the average of the two. To analyze viewpoint-dependent
performance differences, we compute the signed difference

for these metrics.
The results confirm the conclusions drawn from Fig. 3

and Tab. 4. Generic object trackers exhibit a more signifi-
cant performance drop in FPV compared to TPV. Addition-
ally, the bias introduced by viewpoint-optimized trackers is
reflected also in these metrics. It is important to note that
standard VOS evaluation does not weight sequence scores
by sequence or annotation length. In this approach, all se-
quences contribute equally, regardless of their duration or
annotation frequency, even though these factor can influ-
ence tracking performance scoring. As a result, this evalu-
ation method fails to accurately capture viewpoint bias, as
performance measurements become skewed toward short,
high-scoring sequences, masking the true impact of view-
point difference when trackers behave differently in the two
views.

Qualitative Results. Fig. 9, 10, 11, and 12 present qual-
itative examples of the most accurate tracker, DAM4SAM
[51], on selected FPV and TPV sequences from the VISTA



Table 5. Object tracking performance across FPV and TPV with standard VOS metrics. This Table reports J & F , J , and F
generally used in VOS evaluation [43, 55]. Similar conclusions to what reported for Fig. 3 can be made for these results. The computation
of these metrics does not take into account the length of the sequence, and this can overshadow the real average FPV and TPV performance.
Light blue represents FPV bounding-box trackers; dark blue represents FPV segmentation trackers; light red represents TPV bounding-
box trackers; dark red represents TPV segmentation trackers; light green represents generic bounding-box trackers; dark green represents
generic segmentation trackers. Trackers are ordered in descending order by ∆J&F .

J & F J FTracker FPV TPV ∆J&F FPV TPV ∆J FPV TPV ∆F

777 XMem-T-FPV 64.2 57.3 6.9 59.0 49.3 9.7 69.4 65.2 4.2
DDD XMem-F-FPV 63.9 59.3 4.6 58.7 51.2 7.5 69.1 67.4 1.7
777 STARK-T-FPV 35.8 31.5 4.3 34.3 25.2 9.1 37.3 37.7 -0.4
DDD STARK-F-FPV 37.0 34.8 2.2 35.4 27.7 7.7 38.7 41.9 -3.2
⋇⋇⋇ DAM4SAM 69.4 70.1 -0.7 64.8 63.5 1.3 74.0 76.8 -2.8
▷◁▷◁▷◁ EgoSTARK 31.4 33.9 -2.5 30.2 27.4 2.8 32.6 40.5 -7.9
××× AOT 42.9 46.9 -4.0 38.8 39.6 -0.8 47.1 54.2 -7.1
⊗⊗⊗ TaMOs 29.7 34.2 -4.5 27.8 25.8 2.0 31.6 42.7 -11.1
∗∗∗ SAMURAI 63.8 69.0 -5.2 59.2 60.9 -1.7 68.4 77.1 -8.7
⋄⋄⋄ OSTrack 31.9 37.1 -5.2 30.6 30.0 0.6 33.2 44.2 -11.0
⊞⊞⊞ XMem 43.4 49.5 -6.1 40.1 43.6 -3.5 46.7 55.4 -8.7
▷◁▷◁▷◁ STARK 27.7 34.1 -6.4 26.4 27.0 -0.6 29.0 41.2 -12.2
◀◀◀ UNICORN-M 32.8 41.0 -8.2 28.1 32.7 -4.6 37.6 49.2 -11.6
⋆⋆⋆ KeepTrack 28.2 36.6 -8.4 26.8 29.2 -2.4 29.7 44.1 -14.4
DDD STARK-F-TPV 30.8 40.2 -9.4 29.5 31.8 -2.3 32.2 48.7 -16.5
◀◀◀ UNICORN-B 25.5 35.1 -9.6 23.4 27.7 -4.3 27.7 42.5 -14.8
◁◁◁ Cutie 41.0 50.6 -9.6 37.8 44.6 -6.8 44.3 56.6 -12.3
◦◦◦ SeqTrack 27.1 37.4 -10.3 25.5 29.6 -4.1 28.6 45.2 -16.6
▶▶▶ SAM2-M 54.9 65.3 -10.4 51.4 58.5 -7.1 58.4 72.1 -13.7
777 STARK-T-TPV 28.1 38.8 -10.7 26.8 30.7 -3.9 29.4 46.9 -17.5
••• ARTrackV2 23.8 35.0 -11.2 23.1 28.2 -5.1 24.5 41.9 -17.4
DDD XMem-F-TPV 49.5 60.7 -11.2 44.2 52.4 -8.2 54.7 69.0 -14.3
▶▶▶ SAM2-B 36.9 51.1 -14.2 34.9 41.9 -7.0 38.8 60.3 -21.5
777 XMem-T-TPV 44.0 59.3 -15.3 38.7 51.5 -12.8 49.3 67.1 -17.8

test set. Each figure displays the predicted target segmen-
tations alongside the sequence-wise AUC-FPV, AUC-TPV,
and their signed difference.

D. Limitations
This study did not control the placement of TPV cameras.
Although we selected a TPV view that provides the best vi-
sualization of the scene and activity [16], future work could
compare FPV with multiple TPV positions to assess their
impact on tracking performance and explore how different
TPV configurations relate to FPV.

This study did not assess the impact of FPV and TPV
tracking on downstream tasks. Our focus was to evalu-
ate performance differences between FPV and TPV in the
VOTS task [16]. While prior work [10, 37] has shown a
connection between tracking behavior and downstream task
accuracy, we specifically examined object tracking perfor-
mance. Future research could explore how the conclusions

drawn from VISTA relate to the performance of higher-level
vision modules that rely on FPV or TPV object tracking.



Figure 9. Qualitative example # 1. Here, we illustrate the behav-
ior of DAM4SAM [51] on a sequence from VISTA’s evaluation
set DTEST. The frames Fpov

t are overlaid with the predicted seg-
mentation masks M̂pov

t (shown in light green). Below the frames,
we report the sequence-wise AUC-FPV, AUC-TPV, and ∆AUC.
In this example, the tracker loses the target early in the FPV se-
quence, whereas it remains stable in TPV despite object displace-
ment. This discrepancy is reflected in the mean signed difference,
which is highly negative.

Figure 10. Qualitative example # 2. Here, we illustrate the behav-
ior of DAM4SAM [51] on a sequence from VISTA’s evaluation
set DTEST. The frames Fpov

t are overlaid with the predicted seg-
mentation masks M̂pov

t (shown in light green). Below the frames,
we report the sequence-wise AUC-FPV, AUC-TPV, and ∆AUC. In
this example, the tracker remains relatively stable in both FPV and
TPV. However, the high variability of the target appearance in FPV
makes segmentation prediction more challenging. This difference
is reflected in the mean signed difference, indicating better perfor-
mance in TPV.



Figure 11. Qualitative example # 3. Here, we illustrate the be-
havior of DAM4SAM [51] on a sequence from VISTA’s evalua-
tion set DTEST. The frames Fpov

t are overlaid with the predicted
segmentation masks M̂pov

t (shown in light green). Below the
frames, we report the sequence-wise AUC-FPV, AUC-TPV, and
∆AUC. In this example, the tracker remains relatively stable in
both FPV and TPV. However, the lower resolution of the target in
TPV makes segmentation prediction more challenging. This dif-
ference is reflected in the mean signed difference, indicating better
performance in FPV.

Figure 12. Qualitative example # 4. Here, we illustrate the behav-
ior of DAM4SAM [51] on a sequence from VISTA’s evaluation set
DTEST. The frames Fpov

t are overlaid with the predicted segmen-
tation masks M̂pov

t (shown in light green). Below the frames, we
report the sequence-wise AUC-FPV, AUC-TPV, and ∆AUC. In this
example, the tracker loses the target early in the TPV sequence,
whereas it remains stable in FPV despite object transformation.
This discrepancy is reflected in the mean signed difference, which
is highly positive.
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