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A. Detailed Experimental Settings

In this section, we give more details on the setup of our
experiments. We evaluate the performance of our adversar-
ial patch attack on image classification and face recogni-
tion tasks, with comparisons to state-of-the-art attack meth-
ods, such as Google Patch [1], LaVAN [8], GDPA [10], and
Masked Projected Gradient Descent (MPGD), which is an
extension of the standard PGD attack introduced in Madry
et al. [13]. In addition, we evaluate the effectiveness of our
attack against existing defense methods designed specifi-
cally against adversarial patch attacks [2–4, 7, 11, 18]. For
GDPA, we balance attack efficacy and imperceptibility by
setting the visibility parameter α to 0.4, while for MPGD,
we set the l∞ perturbation bound to ϵ = 16/255.

Dataset and Model Setup. We consider a subset of the
ILSVRC 2012 validation set [15] consisting of 1000 cor-
rectly classified images, one from each class, for image
classification. For face recognition tasks, following Li and
Ji [10], we use the test set of the VGG face dataset [10, 14],
consisting of a total of 470 images across 10 classes. We
consider four target network architectures: ResNet-50 [5],
VGG16 [17], Swin Transformer Tiny, and Swin Trans-
former Base [12]. For image classification, we use their
pre-trained weights. For face recognition, we re-train them
on the VGG Face dataset’s train set, which comprised 3, 178
images across 10 classes. The retraining procedure follows
the same specifications as used by [10]. All the images in
both tasks are resized to a dimension of 224 × 224 before
being attacked.

Attack Configuration. In our experiments, we optimize
the patch until the target class confidence reaches 0.9 or for
a maximum of 1, 000 iterations. The patch size is fixed at
84×84, covering 14% of the image. While we use a square
patch following prior works, our optimization framework
can be generalized to other shapes. If the attack fails, we
reinitialize the step size up to three times. All experiments
are conducted on a single NVIDIA A100 GPU (80 GB),

using PyTorch as the deep learning framework.

Attack Success Rate (ASR). We evaluate the effectiveness
of different attack methods based on targeted attack suc-
cess rate, denoted as ASR, which characterizes the ratio of
instances that can be successfully attacked using the evalu-
ated method. Let A be the evaluated attack, fθ be the victim
model, and S be a test set of correctly classified images. The
ASR of A with respect to fθ and S is defined as:

ASR(A; fθ,S) =
1

|S|
∑
x∈S

1
(
fθ(x̂) = ytarg

)
, (1)

where |S| denotes the cardinality of S, and x̂ is the adver-
sarial example generated by A for x.

Imperceptibility. To measure patch imperceptibility, we
use similarity matrices, incorporating both traditional sta-
tistical methods and convolutional neural network (CNN)
based measures. The former measures involve Structural
Similar Index Measure (SSIM) [20], Universal Image Qual-
ity index (UIQ) [19], and Signal to Reconstruction Error ra-
tio (SRE) [9], while the latter involves CLIPScore [6], and
Learned Perceptual Image Patch Similarity (LPIPS) met-
ric [21]. SSIM measures structural similarity, while UIQ
evaluates distortion based on correlation, luminance, and
contrast, yielding a single index within [−1, 1]. SRE, akin
to PSNR, measures error relative to the signal’s power, en-
suring consistency across different brightness levels. CLIP-
Score and LPIPS assess perceptual similarity using pre-
trained DNNs, capturing subtle visual features. We evaluate
similarity between adversarial and original samples on two
scales: globally, by comparing entire images, and locally,
by analyzing the similarity within the attacked region.

B. Other Experiments
B.1. Additional Results on ImageNet
In this section, we present additional detailed results corre-
sponding to every victim model considered, with “Toaster”
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as the target class. The results include a comprehensive
analysis of our attack’s stealthiness, including all the im-
perceptibility metrics considered and mentioned earlier.

The evaluations across victim models, VGG16, ResNet-
50, Swin Transformer Tiny, and Swin Transformer Base,
are presented in Tables 3-6 respectively. The results account
for the stability of IAP across architectures in terms of ASR,
which is either on par with or exceeds the baseline methods
considered. As evident from the analysis, we achieve state-
of-the-art performance in imperceptibility, further demon-
strating its stability. The adversarial samples created corre-
sponding to each victim architecture are shown along with
their target class confidence in Figures 3-6.

Cross-Class Attack Stability. To assess the effectiveness
of our attack across multiple target classes, we extend our
evaluation beyond the “Toaster” class to include “Baseball”
and “Iron” as additional targets. We employ ResNet-50 as
the victim model while maintaining all other attack config-
urations consistent with previous experiments. The results,
summarized in Table 7, demonstrate that IAP achieves con-
sistently high ASR across different target classes while pre-
serving its imperceptibility, as illustrated in Figure 7. No-
tably, our approach exhibits stability across classes, achiev-
ing an ASR of 99.47 ± 0.13 and maintaining high imper-
ceptibility, exemplified by a local SSIM of 0.94± 0.005.

B.2. Additional Results on VGG Face
Here, we present detailed results explicitly corresponding to
every victim model corresponding to the three target classes
considered. Tables 8-10, 11-13, 14-16, and 17-19 summa-
rize the results for the three target classes using VGG16,
ResNet-50, Swin Transformer Tiny, and Swin Transformer
Base as victim models, respectively. The results show con-
sistent attack performance across the criteria considered,
as well as achieving state-of-the-art imperceptibility perfor-
mance, which further demonstrates its efficiency. The ad-
versarial samples corresponding to the target classes “A. J.
Buckley”, “Aamir Khan”, and “Aaron Staton” are shown in
Figures 8-10 respectively.

C. Further Analyses
C.1. Ablation Studies
We perform ablation studies to assess key components of
IAP, including patch size, update iterations, and the regu-
larization coefficient in the loss function (Equation 8). We
compare our update rule with the Adam optimizer and test
the assumption that adversarial patches attract the classi-
fier’s attention. All experiments use ImageNet with Swin
Transformer Base as the victim model. Here, we detail the
comprehensive evaluation corresponding to both attack ef-
ficacy and imperceptibility. Table 20 demonstrates that as
the patch size increases, the imperceptibility improves. Fig-

ure 11 validates this as we see that the attack area becomes
smoother with the increase in the size. Aligned with our
hypothesis, the initial increase in w3 improved the imper-
ceptibility of the generated patches as presented in Table
21. We studied the impact of the update rule proposed by
our method, IAP, by altering it with the update rule corre-
sponding to the Adam optimizer. As shown in Table 22 and
visualized in Figure 12, we achieve most of our impercepti-
bility because of the update rule we utilize for updating the
perturbation. In addition, we also considered the effect of
the number of optimization steps on the ASR and impercep-
tibility of the attack.

Effect of Patch Size. We evaluate the impact of patch size
on attack efficacy and imperceptibility. We hypothesize that
increasing the patch size would enhance attack performance
and imperceptibility, as the perturbations would disperse
over a larger area while remaining less salient. The results
support this hypothesis, with a 99.4% attack success rate
(ASR) for a patch covering 14% of the image, compared
to 72.2% ASR for 2% coverage. For patch sizes of 4% or
more, the ASR reached 90.7% or higher. These findings
also show improved imperceptibility with larger patch sizes
as highlighted in Table 16 and Figure 4.

Effect of Regularization Coefficient. We study the effect
of the regularization coefficient w3 in the human-oriented
distance metric (Eq. 7), part of the total loss function (Eq.
8). We hypothesize that increasing w3 would improve im-
perceptibility at the cost of slightly reducing attack perfor-
mance. Our results support this hypothesis as shown in Ta-
ble 17. As w3 increases, the attack success rate slightly de-
creases while imperceptibility improves. However, beyond
a certain point, the trend reverses due to the destabilizing ef-
fect of large w3 values, which cause the loss function to be
dominated by the regularization term, requiring more itera-
tions for successful attacks and reducing imperceptibility.

Effect of Update Rule. We compare our proposed update
rule, which allows for longer iterations with no perturbation
magnitude constraints while maintaining imperceptibility,
to the widely used Adam Optimizer update rule. We hy-
pothesize that Adam, optimized for attack success, would
yield a higher success rate. However, Adam’s updates al-
ter each color channel separately, potentially changing the
pixel’s base color, whereas our method preserves it. While
Adam achieves a slightly higher attack success rate, IAP
completely outperformed it in terms of imperceptibility as
demonstrated in Table 18. Figure 6 visualizes and compares
the adversarial patches generated by both approaches.

Effect of the number of Update Iterations. As the number
of updates increases, the patch’s appearance diverges from
the original, even if the perturbations remain less salient.
Despite the reduced saliency, more iterations typically im-
prove attack success rates. In these experiments, we fix the



patch size at 6% to evaluate the trade-off between attack ef-
ficacy and imperceptibility. The ASR increases as the num-
ber of update iterations increases, as shown by Table 23,
with a slight reduction in imperceptibility as perturbations
accumulate, as shown in Figure 13.

C.2. GradCAM analysis of Attention Overlap
To understand the change in the attention map induced by
the adversarial samples generated by IAP, we analyze the
shift in the highest attention location of the attention map
generated in comparison to the one generated corresponding
to the benign sample. We use GradCAM [16] to measure
the attention maps. Analysis of the attention maps holds
critical significance because of the defense implications that
it can have on adversarial patch attacks. We measure the
average proportion of the number of adversarial samples for
which the location of highest attention in the attention map
does not come within the attack surface area. We term this
measure as “NoPatchLoc”, which is defined as follows:

NoPatchLoc =
1

N

N∑
i=0

(1− 1A(xi, yi, Oxi, Oyi)), (2)

where N is the total number of adversarial samples ana-
lyzed, and the indicator function is defined as follows:

1A(xi, yi, Oxi , Oyi) =

{
1, if Oxi

≤ xi < Oxi
+ s and Oyi

≤ yi < Oyi
+ s

0, otherwise
,

(3)

where s denotes the patch size, (Oxi
, Oyi

) is the optimal
location identified by our method to locate the adversarial
patch, and (xi, yi) is the coordinate of the highest atten-
tion location. Table 1 demonstrates the NoPatchLoc mea-
sures obtained from the generated adversarial samples cor-
responding to their respective victim models. As evident,
except for ResNet-50, where the measure is 53.70%, the
highest attention location remains consistently outside the
attack region for more than 70% of the perturbed samples
across all other architectures. The highest occurrence is ob-
served for the Swin Transformer Base, achieving 81.30%.
This provides strong evidence that accounts for the strong
stealth capabilities of our method, as highlighted by the per-
formance against defense methods.

C.3. Transferability
We assess the transferability of our general method in the
untargeted scenario without incorporating any adaptations
specifically aimed at enhancing attack transferability. Us-
ing a substitute model approach, we generate adversarial
samples on the previously considered victim models and
evaluate their transferability across a set of target models:
SqueezeNet, ResNet-18, ResNet-34, VGG11, VGG13, and
VGG19. Given that no specific adaptation scheme is used,

Figure 1. Transferability of IAP measured by ASR (%) on Ima-
geNet. The first row represents the substitute model, and the first
column represents the target models.

Model NoPatchLoc(%)

VGG16 72.15
ResNet-50 53.70

Swin Transformer Tiny 73.11
Swin Transformer Base 81.30

Average 70.07

Table 1. Assessment of whether the GradCAM’s highest attention
location overlaps with the adversarial patch location.

our method achieves reasonable ASR as shown in Figure
1. The results indicate that transferability is influenced by
the architectural similarity between the substitute and target
models, as well as their relative model sizes.

C.4. Black-box Adaptation

While IAP is initially designed as a white-box method, it
can be successfully adapted to black-box settings. We ran
additional experiments on ImageNet using the following
black-box variation of IAP. Specifically, we first approx-
imate the Grad-CAM localization map using a surrogate
model (i.e., ResNet-50) for patch placement. Subsequently,
we employ a hybrid approach for perturbation optimization,
where we initialize the perturbations based on the same sur-
rogate model and refine them using NES, a query-based at-
tack algorithm. The results are shown in Table 3 in the main
paper, where our black-box IAP variant achieves high (un-
targeted) attack success rates across different target mod-
els. We test 500 samples per model with a patch size of
84 and other parameters fixed. Based on white-box conver-
gence trends, we run 400 surrogate iterations followed by
200 query-based steps, requiring at most 12, 000 queries.



Figure 2. Illustrative images of physical-world applications of IAP.

Shape ASR Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

Circle 99.2%
Local 0.95 0.88 27.10 91.46 0.085

Global 0.99 0.98 37.79 99.13 0.016

Table 2. Performance of IAP in ASR and various imperceptibility
metrics with a circular patch shape and patch size of 11%.

C.5. Physical-World Applicability
Additionally, we examine IAP’s generalizability to
physical-world, untargeted attack settings on 5 object
classes. Patches are generated using our optimization
scheme, initialized from a reference sticker image like PS-
GANs. To ensure location invariance, each patch is trained
by randomly placing it across four proposed “optimal” po-
sitions from different models. Printed patches are tested on
5 images per object under varying viewpoints (see Figure
2 for illustrative examples), achieving an average ASR of
70%, showing the potential of IAP’s adaptability to physi-
cal domains.

C.6. Flexibility in Patch Shape
We also run experiments to study whether our method for
generating invisible adversarial patches is shape-agnostic.
Results are shown in Table 2, where we evaluate the per-
formance of IAP using a circular patch with a diameter of
84 pixels (11% image area). Under our best-performing
setup with Swin Transformer Base as the target model, IAP
achieves a high ASR of 99.2% while preserving impercep-
tibility with LPIPS as low as 0.085. We believe similar re-
sults can also be achieved for other typical patch shapes,
since our attack framework supports arbitrary binary masks.

Figure 3. Visualizations of the original images and their adver-
sarial counterparts produced by IAP corresponding to the target
class on the ImageNet Dataset with VGG16 as the victim model.
x represents the benign sample, and x̂ represents the adversarial
samples with the generated adversarial patch corresponding to the
target class. The smaller images at the right-bottom corner corre-
spond to the optimal location (i′, j′).

Figure 4. Visualizations of the original images and their adversar-
ial counterparts produced by IAP corresponding to the target class
on the ImageNet Dataset with ResNet-50 as the victim model.
x represents the benign sample, and x̂ represents the adversarial
samples with the generated adversarial patch corresponding to the
target class. The smaller images at the right-bottom corner corre-
spond to the optimal location (i′, j′).



Figure 5. Visualizations of the original images and their adver-
sarial counterparts produced by IAP corresponding to the target
class on the ImageNet Dataset with Swin Transformer Tiny as
the victim model. x represents the benign sample, and x̂ repre-
sents the adversarial samples with the generated adversarial patch
corresponding to the target class. The smaller images at the right-
bottom corner correspond to the optimal location (i′, j′).

Figure 6. Visualizations of the original images and their adver-
sarial counterparts produced by IAP corresponding to the target
class on the ImageNet Dataset with Swin Transformer Base as
the victim model. x represents the benign sample, and x̂ repre-
sents the adversarial samples with the generated adversarial patch
corresponding to the target class. The smaller images at the right-
bottom corner correspond to the optimal location (i′, j′).

Figure 7. Visualizations of the original images and their adversar-
ial counterparts produced by IAP corresponding to the target class
on the ImageNet Dataset with ResNet-50 as the victim model.
x represents the benign sample, and x̂ represents the adversarial
samples with the generated adversarial patch corresponding to the
target class. The smaller images at the right-bottom corner corre-
spond to the optimal location (i′, j′).

Figure 8. Visualizations of the original images and their adver-
sarial counterparts with IAP and the target class “A. J. Buckley”
on the VGG Face Dataset. x represents the benign sample, and x̂
represents the adversarial samples with the generated adversarial
patch corresponding to the target class. The smaller images at the
right-bottom corner correspond to the optimal location (i′, j′).



Figure 9. Visualizations of the original images and their adver-
sarial counterparts with IAP and the target class “Aamir Khan”
on the VGG Face Dataset. x represents the benign sample, and x̂
represents the adversarial samples with the generated adversarial
patch corresponding to the target class. The smaller images at the
right-bottom corner correspond to the optimal location (i′, j′).

Figure 10. Visualizations of the original images and their adver-
sarial counterparts with IAP and the target class “Aaron Staton”
on the VGG Face Dataset. x represents the benign sample, and x̂
represents the adversarial samples with the generated adversarial
patch corresponding to the target class. The smaller images at the
right-bottom corner correspond to the optimal location (i′, j′).

Figure 11. Visualizations of the impact of the patch sizes on attack
imperceptibility. x represents the benign sample, and x̂ represents
the adversarial samples with the generated adversarial patch cor-
responding to the target class. The smaller images at the right-
bottom corner correspond to the optimal location (i′, j′).

Figure 12. Visualizations of adversarial patch generated by update
rule from Adam optimizer vs IAP. x represents the benign sam-
ple, and x̂ represents the adversarial samples with the generated
adversarial patch corresponding to the target class. The smaller
images at the right-bottom corner correspond to the optimal loca-
tion (i′, j′).

Figure 13. Visualizations of the impact of the number of update
iterations on attack imperceptibility. x̂ represents the adversar-
ial samples with the generated adversarial patch. The smaller im-
ages at the right-bottom corner correspond to the optimal location
(i′, j′). The x-axis represents the number of update iterations.



Method ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

Google Patch 100 Local 0.002 0.000 11.93 32.50 0.760

Global 0.830 0.820 18.73 73.10 0.190

LaVAN 93.6
Local 0.002 0.000 11.13 33.20 0.790

Global 0.820 0.810 20.30 76.32 0.230

GDPA 89.2
Local 0.310 0.300 19.90 56.25 0.610

Global 0.890 0.880 28.00 84.00 0.130

MPGD 96.5
Local 0.810 0.800 26.44 73.91 0.320

Global 0.940 0.920 32.80 94.00 0.090

Ours 99.1 Local 0.900 0.860 28.94 72.70 0.230

Global 0.985 0.960 36.42 95.10 0.060

Table 3. Detailed comparison of attack efficacy through ASR (%)
and imperceptibility with VGG16 as the victim model on the Ima-
geNet dataset. For SSIM, UIQ, SRE, and CLIP scores, the higher
(↑) the better, while the lower (↓) the better for LIPIPS.

Method ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

Google Patch 99.1
Local 0.010 0.000 14.20 33.00 0.740

Global 0.820 0.810 22.90 74.10 0.180

LaVAN 100 Local 0.010 0.000 14.20 33.30 0.780

Global 0.820 0.810 23.40 76.10 0.180

GDPA 93.7
Local 0.350 0.330 19.80 65.20 0.570

Global 0.920 0.910 28.40 87.10 0.090

MPGD 97.8
Local 0.790 0.780 25.30 76.20 0.240

Global 0.950 0.930 33.60 93.30 0.050

Ours 99.5 Local 0.940 0.910 28.34 84.54 0.120

Global 0.990 0.970 37.23 96.52 0.020

Table 4. Detailed comparison of attack efficacy through ASR (%)
and imperceptibility with ResNet-50 as the victim model on the
ImageNet dataset. For SSIM, UIQ, SRE, and CLIP scores, the
higher (↑) the better, while the lower (↓) the better for LIPIPS.

Method ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

Google Patch 99.8 Local 0.002 0.000 11.80 32.80 0.770

Global 0.830 0.820 18.94 73.90 0.150

LaVAN 99.7 Local 0.005 0.000 14.13 33.10 0.780

Global 0.820 0.810 23.30 76.32 0.170

GDPA 83.7 Local 0.390 0.360 20.20 63.65 0.540

Global 0.900 0.890 28.21 85.75 0.100

MPGD 98.8 Local 0.800 0.790 25.50 80.54 0.190

Global 0.940 0.920 33.11 95.80 0.050

Ours 99.6 Local 0.980 0.940 31.74 90.41 0.060

Global 0.996 0.980 40.67 98.61 0.008

Table 5. Detailed comparison of ASR (%) and imperceptibility
with Swin Transformer Tiny as the victim model on the Ima-
geNet dataset. For SSIM, UIQ, SRE, and CLIP scores, the higher
(↑) the better, while the lower (↓) the better for LIPIPS.

Method ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

Google Patch 97.9
Local 0.003 0.000 10.74 32.90 0.770

Global 0.830 0.820 17.61 73.20 0.170

LaVAN 100 Local 0.004 0.000 13.10 33.19 0.780

Global 0.820 0.810 23.30 76.35 0.180

GDPA 85.1
Local 0.360 0.345 20.40 61.25 0.540

Global 0.880 0.870 28.00 85.10 0.110

MPGD 70.5
Local 0.800 0.800 25.30 74.30 0.200

Global 0.940 0.920 33.00 92.10 0.050

Ours 99.4 Local 0.970 0.910 31.30 89.33 0.070

Global 0.994 0.970 40.10 98.43 0.010

Table 6. Detailed comparison of ASR (%) and imperceptibility
with Swin Transformer Base as the victim model on the Ima-
geNet dataset. For SSIM, UIQ, SRE, and CLIP scores, the higher
(↑) the better, while the lower (↓) the better for LIPIPS.

ytarg ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

Ipod 99.6
Local 0.95 0.92 28.9 86.8 0.115

Global 0.99 0.97 37.8 97.1 0.018

Baseball 99.3
Local 0.94 0.91 28.5 85.0 0.118

Global 0.99 0.97 37.4 96.7 0.019

Toaster 99.5
Local 0.94 0.91 28.3 84.5 0.120

Global 0.990 0.970 37.23 96.52 0.020

Table 7. Detailed evaluation of attack efficacy through ASR (%)
and imperceptibility for different target classes within the Ima-
geNet Dataset. For SSIM, UIQ, SRE, and CLIP scores, the higher
(↑), the better, while the lower (↓), the better for LPIPS.

Method ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

Google Patch 100 Local 0.000 0.000 11.95 36.82 0.890

Global 0.812 0.820 19.46 68.22 0.270

LaVAN 100 Local 0.006 0.000 15.85 36.55 0.865

Global 0.820 0.825 24.18 71.84 0.220

GDPA 96.12
Local 0.240 0.220 21.00 57.96 0.660

Global 0.870 0.865 29.00 75.66 0.151

MPGD 88.9
Local 0.620 0.533 28.30 65.30 0.400

Global 0.960 0.935 36.70 86.70 0.087

Ours 100 Local 0.930 0.880 31.81 66.50 0.207

Global 0.990 0.980 40.11 88.57 0.039

Table 8. Detailed evaluation and comparison of attack efficacy
through ASR (%) and imperceptibility with VGG16 as the victim
model on the VGG Face dataset for the Target class “A. J. Buck-
ley”. For SSIM, UIQ, SRE, and CLIP scores, the higher (↑) the
better, while the lower (↓) the better for LPIPS.



Method ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

Google Patch 99.9 Local 0.000 0.000 11.76 36.43 0.860

Global 0.810 0.820 19.36 68.22 0.270

LaVAN 99.5
Local 0.005 0.000 15.64 36.52 0.850

Global 0.820 0.825 24.06 71.56 0.220

GDPA 99.50
Local 0.220 0.190 21.46 55.50 0.685

Global 0.850 0.840 55.50 63.41 0.190

MPGD 86.85
Local 0.650 0.550 27.80 65.20 0.420

Global 0.950 0.930 36.10 86.60 0.090

Ours 98.8 Local 0.924 0.870 31.94 68.24 0.200

Global 0.990 0.980 40.08 88.70 0.039

Table 9. Detailed evaluation and comparison of attack efficacy
through ASR (%) and imperceptibility with VGG16 as the vic-
tim model on the VGG Face dataset for the Target class “Aamir
Khan”. For SSIM, UIQ, SRE, and CLIP scores, the higher (↑) the
better, while the lower (↓) the better for LPIPS.

Method ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

Google Patch 100 Local 0.000 0.000 10.76 36.65 0.860

Global 0.810 0.820 18.27 68.70 0.290

LaVAN 100 Local 0.003 0.000 11.89 36.45 0.870

Global 0.820 0.824 20.30 71.67 0.260

GDPA 91.50
Local 0.476 0.465 22.85 60.48 0.53

Global 0.900 0.890 29.45 76.00 0.125

MPGD 84.95
Local 0.680 0.564 27.30 65.10 0.440

Global 0.940 0.924 35.88 85.10 0.094

Ours 99.53 Local 0.904 0.850 31.40 65.80 0.217

Global 0.985 0.980 39.61 87.72 0.042

Table 10. Detailed evaluation and comparison of attack efficacy
through ASR (%) and imperceptibility with VGG16 as the victim
model on the VGG Face dataset for the Target class “Aaron Sta-
ton”. For SSIM, UIQ, SRE, and CLIP scores, the higher (↑) the
better, while the lower (↓) the better for LPIPS.

Method ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

Google Patch 98.0
Local 0.010 0.000 17.52 38.81 0.730

Global 0.830 0.820 24.25 63.13 0.210

LaVAN 100 Local 0.007 0.000 16.80 36.81 0.840

Global 0.840 0.826 25.12 71.64 0.200

GDPA 99.5
Local 0.310 0.250 22.00 53.00 0.660

Global 0.880 0.860 29.00 59.00 0.170

MPGD 78.1
Local 0.620 0.560 26.99 61.78 0.380

Global 0.950 0.930 35.56 85.42 0.080

Ours 98.8 Local 0.920 0.880 32.11 69.40 0.170

Global 0.990 0.980 40.66 90.55 0.030

Table 11. Detailed evaluation and comparison of attack efficacy
through ASR (%) and imperceptibility with ResNet-50 as the vic-
tim model on the VGG Face dataset for the Target class “A. J.
Buckley”. For SSIM, UIQ, SRE, and CLIP scores, the higher (↑)
the better, while the lower (↓) the better for LPIPS.

Method ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

Google Patch 99.5
Local 0.001 0.000 16.47 38.80 0.800

Global 0.830 0.820 21.89 63.13 0.270

LaVAN 100 Local 0.007 0.000 16.89 36.82 0.830

Global 0.840 0.826 25.30 71.51 0.210

GDPA 99.70
Local 0.280 0.230 21.99 56.73 0.600

Global 0.870 0.850 56.73 59.32 0.200

MPGD 70.74
Local 0.610 0.550 26.60 59.87 0.390

Global 0.940 0.930 35.30 84.63 0.080

Ours 93.0 Local 0.890 0.830 30.88 65.75 0.226

Global 0.980 0.970 39.37 87.30 0.040

Table 12. Detailed evaluation and comparison of attack efficacy
through ASR (%) and imperceptibility with ResNet-50 as the vic-
tim model on the VGG Face dataset for the Target class “Aamir
Khan”. For SSIM, UIQ, SRE, and CLIP scores, the higher (↑) the
better, while the lower (↓) the better for LPIPS.

Method ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

Google Patch 80.3
Local 0.010 0.000 17.52 38.81 0.730

Global 0.830 0.820 24.25 63.13 0.210

LaVAN 97.0 Local 0.010 0.000 17.45 41.54 0.750

Global 0.830 0.820 22.32 62.68 0.240

GDPA 98.00
Local 0.330 0.280 22.10 55.68 0.60

Global 0.880 0.850 29.12 57.54 0.200

MPGD 52.50
Local 0.610 0.550 26.83 60.25 0.380

Global 0.940 0.930 35.25 83.42 0.080

Ours 91.80 Local 0.890 0.840 30.89 65.70 0.216

Global 0.980 0.970 39.33 88.32 0.040

Table 13. Detailed evaluation and comparison of attack efficacy
through ASR (%) and imperceptibility with ResNet-50 as the vic-
tim model on the VGG Face dataset for the Target class “Aaron
Staton”. For SSIM, UIQ, SRE, and CLIP scores, the higher (↑)
the better, while the lower (↓) the better for LPIPS.

Method ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

Google Patch 98.9
Local 0.040 0.000 10.12 36.10 0.820

Global 0.830 0.830 16.87 66.88 0.260

LaVAN 100 Local 0.007 0.000 16.49 36.50 0.850

Global 0.840 0.825 24.75 71.87 0.210

GDPA 92.9
Local 0.330 0.270 21.85 62.10 0.570

Global 0.880 0.870 29.30 71.76 0.140

MPGD 95.5
Local 0.630 0.540 27.65 62.48 0.380

Global 0.950 0.930 35.72 86.66 0.070

Ours 99.3 Local 0.860 0.800 29.22 63.28 0.275

Global 0.980 0.970 38.00 87.83 0.048

Table 14. Detailed evaluation and comparison of attack efficacy
through ASR (%) and imperceptibility with Swin Transformer
Tiny as the victim model on the VGG Face dataset for the Target
class “A. J. Buckley”. For SSIM, UIQ, SRE, and CLIP scores,
the higher (↑) the better, while the lower (↓) the better for LPIPS.



Method ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

Google Patch 99.2
Local 0.000 0.000 10.11 37.23 0.780

Global 0.830 0.820 17.22 67.50 0.230

LaVAN 100 Local 0.006 0.000 16.31 36.57 0.850

Global 0.840 0.825 24.71 71.73 0.210

GDPA 100
Local 0.340 0.300 19.85 60.84 0.600

Global 0.910 0.910 29.82 80.01 0.100

MPGD 94.87
Local 0.640 0.550 27.68 62.69 0.370

Global 0.950 0.930 35.80 86.97 0.070

Ours 99.3 Local 0.870 0.820 29.80 63.00 0.240

Global 0.980 0.970 38.60 88.20 0.043

Table 15. Detailed evaluation and comparison of attack efficacy
through ASR (%) and imperceptibility with Swin Transformer
Tiny as the victim model on the VGG Face dataset for the Target
class “Aamir Khan”. For SSIM, UIQ, SRE, and CLIP scores, the
higher (↑) the better, while the lower (↓) the better for LPIPS.

Method ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

Google Patch 99.3
Local 0.000 0.000 12.60 38.84 0.820

Global 0.830 0.820 17.48 63.13 0.290

LaVAN 100 Local 0.007 0.000 16.45 36.67 0.850

Global 0.840 0.825 24.82 72.06 0.210

GDPA 92.4
Local 0.310 0.260 20.19 54.86 0.65

Global 0.860 0.840 27.21 60.54 0.220

MPGD 96.2
Local 0.640 0.550 27.76 61.90 0.360

Global 0.950 0.930 35.85 87.30 0.070

Ours 98.60 Local 0.860 0.800 29.64 62.00 0.260

Global 0.980 0.970 38.34 87.90 0.046

Table 16. Detailed evaluation and comparison of attack efficacy
through ASR (%) and imperceptibility with Swin Transformer
Tiny as the victim model on the VGG Face dataset for the Target
class “Aaron Staton”. For SSIM, UIQ, SRE, and CLIP scores,
the higher (↑) the better, while the lower (↓) the better for LPIPS.

Method ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

Google Patch 98.2
Local 0.000 0.000 11.23 36.51 0.835

Global 0.830 0.820 18.23 67.65 0.240

LaVAN 100 Local 0.005 0.000 15.47 36.52 0.850

Global 0.840 0.825 23.80 71.82 0.220

GDPA 77.24
Local 0.410 0.360 21.59 58.14 0.56

Global 0.910 0.900 29.66 72.23 0.110

MPGD 97.9
Local 0.600 0.520 27.45 61.22 0.390

Global 0.940 0.920 35.57 85.00 0.080

Ours 99.0 Local 0.860 0.780 29.8 63.00 0.300

Global 0.980 0.960 38.10 86.00 0.055

Table 17. Detailed evaluation and comparison of attack efficacy
through ASR (%) and imperceptibility with Swin Transformer
Base as the victim model on the VGG Face dataset for the Target
class “A. J. Buckley”. For SSIM, UIQ, SRE, and CLIP scores,
the higher (↑) the better, while the lower (↓) the better for LPIPS.

Method ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

Google Patch 97.2
Local 0.000 0.000 10.78 36.85 0.900

Global 0.830 0.820 18.10 69.36 0.260

LaVAN 99.3 Local 0.004 0.000 15.00 36.49 0.850

Global 0.840 0.824 23.40 71.68 0.220

GDPA 55.1
Local 0.160 0.140 18.36 65.87 0.700

Global 0.920 0.920 30.10 84.10 0.090

MPGD 80.81
Local 0.610 0.530 27.35 61.22 0.390

Global 0.940 0.930 35.47 85.28 0.080

Ours 97.0 Local 0.840 0.760 29.63 61.00 0.300

Global 0.970 0.960 37.84 86.00 0.055

Table 18. Detailed evaluation and comparison of attack efficacy
through ASR (%) and imperceptibility with Swin Transformer
Base as the victim model on the VGG Face dataset for the Target
class “Aamir Khan”. For SSIM, UIQ, SRE, and CLIP scores, the
higher (↑) the better, while the lower (↓) the better for LPIPS.

Method ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

Google Patch 98.3
Local 0.000 0.000 11.86 35.58 0.920

Global 0.830 0.820 17.78 68.63 0.280

LaVAN 99.8 Local 0.006 0.000 15.73 36.70 0.850

Global 0.840 0.825 24.12 71.96 0.210

GDPA 84.9
Local 0.290 0.260 19.76 57.25 0.620

Global 0.910 0.910 29.72 78.20 0.100

MPGD 94.9
Local 0.630 0.550 27.75 61.50 0.370

Global 0.950 0.930 35.84 86.54 0.070

Ours 98.6 Local 0.880 0.810 30.50 63.50 0.250

Global 0.980 0.970 38.84 88.40 0.045

Table 19. Detailed evaluation and comparison of attack efficacy
through ASR (%) and imperceptibility with Swin Transformer
Base as the victim model on the VGG Face dataset for the Target
class “Aaron Staton”. For SSIM, UIQ, SRE, and CLIP scores,
the higher (↑) the better, while the lower (↓) the better for LPIPS.

Patch Size(%) ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

2 72.2
Local 0.640 0.530 21.07 70.00 0.413

Global 0.992 0.985 38.10 98.20 0.014

4 90.7
Local 0.784 0.683 23.32 70.77 0.308

Global 0.991 0.972 37.68 98.11 0.014

6 94.2
Local 0.854 0.756 25.02 74.74 0.024

Global 0.991 0.970 37.86 98.18 0.013

8 97.3
Local 0.896 0.810 26.77 78.05 0.183

Global 0.991 0.970 38.14 98.15 0.012

10 98.1
Local 0.920 0.840 27.90 80.91 0.152

Global 0.992 0.970 38.31 97.97 0.011

12 99.0
Local 0.934 0.860 28.90 83.43 0.126

Global 0.992 0.965 38.46 98.03 0.011

14 99.4 Local 0.970 0.910 31.30 89.33 0.070

Global 0.994 0.970 40.10 98.43 0.010

Table 20. Impact of patch size on attack performance represented
through ASR (%) and imperceptibility with Swin Transformer
Base as the victim model on the ImageNet dataset. For SSIM,
UIQ, SRE, and CLIP scores, the higher (↑) the better, while the
lower (↓) the better for LPIPS.



w3 ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

0 99.0
Local 0.943 0.873 29.76 85.54 0.111

Global 0.992 0.964 38.59 97.95 0.017

1 98.9
Local 0.944 0.874 29.79 85.65 0.110

Global 0.992 0.965 38.62 97.97 0.017

4 98.9
Local 0.945 0.875 29.83 85.66 0.109

Global 0.992 0.965 38.67 97.99 0.017

7 98.8
Local 0.946 0.876 29.84 85.68 0.108

Global 0.992 0.966 38.69 98.01 0.016

10 99.1
Local 0.945 0.875 29.83 85.71 0.108

Global 0.992 0.965 38.66 97.98 0.017

13 99.0
Local 0.944 0.874 29.78 85.56 0.110

Global 0.992 0.965 38.60 97.98 0.017

Table 21. Impact of distance term regularization coefficient w3

on attack performance represented through ASR (%) and imper-
ceptibility with Swin Transformer Base as the victim model on
the ImageNet dataset. For SSIM, UIQ, SRE, and CLIP scores, the
higher (↑) the better, while the lower (↓) the better for LPIPS.

Update Rule ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

Adam 100 Local 0.130 0.157 17.13 36.15 0.662

Global 0.867 0.848 25.98 80.94 0.130

Ours 99.4
Local 0.970 0.910 31.30 89.33 0.070

Global 0.994 0.970 40.10 98.43 0.010

Table 22. Impact of the update rule on attack performance rep-
resented through ASR (%) and imperceptibility with Swin Trans-
former Base as the victim model on the ImageNet dataset. For
SSIM, UIQ, SRE, and CLIP scores, the higher (↑) the better, while
the lower (↓) the better for LPIPS.

No. Iters ASR(%) Scale Imperceptibility metric

SSIM (↑) UIQ (↑) SRE (↑) CLIP (↑) LPIPS (↓)

500 86.0
Local 0.870 0.770 25.88 75.87 0.223

Global 0.992 0.972 38.48 98.23 0.015

1000 94.2
Local 0.854 0.756 25.02 74.74 0.024

Global 0.991 0.970 37.86 98.18 0.013

1500 96.2
Local 0.850 0.755 24.91 73.81 0.024

Global 0.991 0.969 37.70 98.10 0.016

2000 97.3
Local 0.843 0.749 24.77 73.29 0.246

Global 0.990 0.968 37.59 98.04 0.017

2500 98.0
Local 0.840 0.746 24.67 72.87 0.249

Global 0.990 0.967 37.50 98.02 0.017

3000 98.5
Local 0.836 0.743 24.48 72.78 0.252

Global 0.990 0.966 37.41 97.98 0.017

3500 98.6 Local 0.834 0.741 24.65 72.49 0.254

Global 0.990 0.969 37.40 97.92 0.017

Table 23. Impact of number of update iterations on attack per-
formance, represented through ASR (%) and imperceptibility with
Swin Transformer Base as the victim model on the ImageNet
dataset. For SSIM, UIQ, SRE, and CLIP scores, the higher (↑) the
better, while the lower (↓) the better for LPIPS. Patch size is kept
fixed at 6%.
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