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Supplementary Material

A1. Results on Different Model Setup

We additionally experiment with using a DINOv2 + SigLIP
visual encoder. As shown in Table A1, we observe the same
behavior that removing RoPE substantially improves per-
formance and incorporating uniform sampling is strong.

A2. Additional FEATHER Results

We compare FEATHER performance against FastV and
PyramidDrop on all evaluated benchmarks in Table A2.
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Attention-based
ωoriginal 68% 27.2 21.9 27.7 27.8 31.1 56.6 35.6 59.1 74.0 57.7 66.1 84.6 60.2 67.1 52.7

ω-R 68% 37.2 37.0 38.7 34.9 38.1 60.1 45.4 60.4 76.5 58.2 66.3 85.9 61.1 65.1 52.9
! +10.0 +15.0 +11.0 +7.0 +7.0 +3.5 +9.7 +1.2 +2.5 +0.5 +0.1 +1.3 +0.9 -2.0 +0.2

Non-attention-based
ωKNN 66% 20.5 13.4 22.1 22.0 24.6 54.2 29.9 60.0 70.2 57.0 60.5 77.7 51.9 61.9 50.7

ωuniform 66% 38.3 32.7 38.8 38.8 42.7 58.3 37.6 61.9 75.8 58.0 65.8 85.9 60.2 65.0 52.2

Ensemble
ω-R + ωuniform (Ours) 61% 46.3 41.6 47.3 46.0 50.1 61.3 46.8 62.0 77.7 58.7 66.8 86.9 61.6 65.4 53.3

Table A1. Evaluating criteria using DINOv2 + SigLIP visual encoder. For each task, we bold the best result and underline the second-best
result. Using K = 3 for all setups.
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Baseline 0% 20.3 53.2 40.7 56.3 55.0 60.9 64.1 54.9 63.3 78.9 59.3 66.1 87.4 59.3 63.3 54.3

FastV 68% 15.1 5.9 5.7 5.1 6.1 6.7 54.8 31.8 58.4 72.7 56.3 64.0 83.2 57.1 63.3 52.4
PyramidDrop 65% 15.7 28.9 24.0 29.2 29.7 32.9 60.8 47.1 61.2 76.9 57.9 65.3 86.6 58.2 63.4 53.1

FEATHER 64% 15.7 39.3 33.1 40.1 39.7 44.1 61.9 51.4 61.8 77.9 56.5 66.1 87.7 59.1 63.4 54.2

FastV 45% 16.8 29.1 17.5 29.5 33.1 36.1 61.0 45.8 62.3 77.4 58.4 65.7 86.8 59.2 63.3 53.5
PyramidDrop 46% 16.8 46.6 37.4 48.3 47.8 53.0 63.7 53.8 63.1 78.7 59.1 66.2 87.5 59.4 63.5 54.3

FEATHER 48% 16.5 49.7 39.3 52.1 50.9 56.7 63.9 54.6 63.2 78.8 59.0 66.3 87.7 59.2 64.0 54.6

Table A2. Comparing FEATHER performance against FastV and PyramidDrop. The best results are bolded (excluding the baseline
method).

In addition, we show performance with respect to total
runtime on a NVIDIA L40S in Figure A1.

(b) Criteria performance on non-
localization tasks (with SigLIP encoder)

(a) Criteria evaluated with Dinov2-SigLIP 
encoder

Figure A1. Total runtime on L40S vs. performance for FastV,
PyramidDrop, and FEATHER.



A3. Comparison Against FasterVLM and

VisionZip

We present FasterVLM and VisionZip performance in Ta-
ble A3. We find that these approaches, while performing
comparably to our approach on some benchmarks, perform
vastly worse on localization benchmarks. We expect this
is because positional information is not maintained in these
methods, as image tokens are filtered without altering the
positional embeddings. We verify the importance of posi-
tional embeddings in §A4. Note that since our setup uses
the SigLIP encoder, for FasterVLM (which relies on [CLS]
attention), we use the proposed solution in VisionZip of av-
eraging attention each token receives from all others in the
sequence.

A4. Token Shuffling Ablation

To assess the impact of positional embeddings on model
performance, we shuffle positional embeddings for the im-
age tokens and evaluate both the original VLM and our
FEATHER approach. As shown in Table A3, the localiza-
tion performance of both methods drops drastically for lo-
calization tasks, substantially for TextVQA, and relatively
little for other benchmarks. This result supports our key in-
sight that many vision-language benchmarks inadequately
capture the shortcomings of efficiency methods due to their
limited ability to assess fine-grained visual capabilities, par-
ticularly for visual grounding.
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Baseline 0% 53.2 40.7 56.3 55.0 60.9 64.1 54.9 63.3 78.9 59.3 66.1 87.4 59.3 63.3 54.3

Baseline (pos shuffled) 0% 8.0 9.0 7.8 7.1 8.0 59.2 44.1 60.3 75.8 56.8 63.3 86.6 55.3 59.2 51.9

FasterVLM 65% 5.7 8.0 5.9 4.2 4.7 60.9 50.9 59.9 76.5 56.4 66.6 85.2 62.6 63.7 54.7

VisionZip 65% 8.5 7.3 9.0 8.1 9.5 61.1 50.8 60.2 76.7 56.7 66.5 85.3 62.9 63.7 54.3

FEATHER 64% 39.3 33.1 40.1 39.7 44.1 61.9 51.4 61.8 77.9 56.5 66.1 87.7 59.1 63.4 54.2
FEATHER (pos shuffled) 64% 5.3 5.3 4.8 5.2 5.8 57.8 41.7 58.9 75.0 55.5 63.2 86.0 55.7 58.8 52.5

Table A3. Comparison against FasterVLM and VisionZip and positional embeddings ablation (where image token positions are shuffled).
The best results are bolded.

A5. Token Pruning Visualizations

In this supplemental material section, we provide a quali-
tative analysis comparing the pruning effectiveness of var-
ious criteria as well as the final approaches of FEATHER,
FastV, and PyramidDrop. Namely, we visualize the ability
of approaches to retain important tokens, particularly for lo-
calization. In Figure A2 and Figure A3, we visualize prun-
ing from the various criteria assessed in the main text when
pruning is done after layers three and eight, respectively. In
Figure A4, we visualize pruning from the final approaches
of FEATHER, FastV, and PyramidDrop.

A5.1. Comparing pruning criteria

We first visualize the retained tokens of various criteria
when pruning is applied after layer three (see Figure A2)
and layer eight (see Figure A3). We see that these visualiza-
tions support our quantitative results from the main paper.
Specifically, (1) ω-R removes the criteria tendency of select-
ing bottom image tokens, resulting in an improved selection
of maintained tokens; (2) the attention-based criteria im-
prove when pruning after a later layer; and (3) adding uni-
form sampling to the attention-based pruning criteria with
ω-R + ωuniform improves token selection.



Figure A2. Visualizing the ability of various pruning criteria to maintain visual tokens relevant to the reference expression when applied
after layer three. We observe that ω-R resolves ωoriginal’s tendency of selecting bottom image tokens and that uniform sampling is a robust
approach that improves the token selection effectiveness of ω-R with ω-R + ωuniform. See the main text for criteria definitions.



Figure A3. Visualizing the ability of various pruning criteria to maintain visual tokens relevant to the reference expression when applied
after layer eight. We observe that the attention-based criteria are more effective when pruning after this layer compared to after layer three.
See the main text for criteria definitions.



A5.2. Comparing FEATHER to FastV and Pyramid-

Drop

Additionally, we visualize the retained tokens for the
FEATHER, FastV, and PyramidDrop approaches.

As shown in Figure A4, when comparing the remain-
ing tokens used for prediction (after layer 16 for FEATHER,
layer 24 for PyramidDrop, and layer three for FastV), we
see that our approach retains substantially more tokens
around and inside the reference expression bounding box.

Figure A4. Visualizing the ability of FEATHER, FastV, and PyramidDrop to retain visual tokens relevant to the reference expression. We
observe that our approach retains a substantially higher portion of tokens relevant to the reference expression.
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