A. Fields of the Object Entry

An object in Persistent Object Memory has the following

fields:

e ID: The unique object ID in the memory, together with
the detected category. Our 3D object re-identification
algorithm can be found in Appendix C.

* STATE: The object state can be "open", "close", "in hand"

or "normal". It is updated by VLM, which will be dis-

cussed in Appendix D.

Related Objects(RO): A list of objects that have "on",

"uphold"”, "in" and "contain" relations with the entry ob-

ject. The detections of These relations are based on 3D

bounding boxes. For example, Given the 3D bounding
boxes By and Bs of object O; and O3 correspondingly, if

Bi has a higher altitude than By, B; has contact with Bs

and B is inside the horizontal surface of By, then O is

"on" Os and Oz "upholds" Oy .

* 3D Bbox: It is obtained by 2D-3D lifting and dynamically
updated by the moving average algorithm. Please refer to
Appendix B and Appendix C for more details.

* OBJ Feat: It is the CLIP feature of the object’s cropped
image. It is updated by the moving average algorithm.
Details are provided in Appendix C.

¢ CTX Feat: It is the CLIP feature of the frame where the
object is visible. It is updated by the moving average
algorithm. Please refer to Appendix C for details.

B. 2D-3D Lifting

In this paper, 2D-3D Lifting refers to getting the 3D bound-
ing boxes of the objects using 2D object detection bounding
boxes, camera poses, and depth images. Different from meth-
ods that use point clouds or voxels to represent 3D object
geometry, we found that representing object geometry as 3D
bounding boxes is enough for embodied perception. More
importantly, compared to point clouds or voxels, 3D bound-
ing boxes are more memory-efficient and can be maintained
and updated easily, which makes them a natural choice for
3D object perception in dynamic scenes.

To get the 3D bounding boxes of the objects, we first
use YoloWorld[2] detector to predict the 2D bounding boxes
of the objects. SAM-2[40] is then adopted to get the cor-
responding object masks for the detected objects given the
frame and the bounding boxes. For each object, we use its
2D object mask to get its depth pixels and transform them
into object surface points in the world coordinate system
using the camera intrinsic and extrinsic. We then filter out
the bad points (usually, the foreground and the background
pixels caused by imperfect segmentation mask prediction)
by simply sorting the object surface points by their distances
to the camera, and removing the first 10% and the last 10%
of the points to finally get the refined object surface points.
The object bounding boxes are then computed based on the

minimum and maximum values of the points’ coordinates.

C. Object Re-Identification in Dynamic Scenes

Accurate object re-identification (re-ID) in dynamic scenes
can better facilitate embodied perception, task planning, and
reasoning. Embodied VideoAgent utilizes both object vi-
sual features and object 3D bounding boxes for object re-
identification. The visual similarity score and the spatial
similarity score of an object pair are detailed as follows.

C.1. Visual Similarity Score

For a detected object on the 2D frame, we crop the object
image from the frame using its 2D bounding box and extract
the CLIP[39] and DINOV2[36] features of this image crop
as the object’s visual features. To calculate the visual simi-
larity of two objects, we use the following visual similarity
score[5]:

Visual(O;, O;) = 0.15 x CLIP(O;, O;) + 0.85 + DINOv2(0;,0;) (1)

where Visual(O;, O;) denotes visual similarity of object O;
and O;, CLIP(-,-) and DINOv2(-,-) are the CLIP and
DINOV?2 similarities proposed in [5].

Besides the CLIP feature of the cropped object image
(denoted as OBJ Feat in Figure 2), the CLIP feature of
the frame containing the object is also stored as the context
feature of the object (denoted as CTX Feat in Figure 2).
The context feature will not be used for object re-ID, but
it later enables retrieving objects by an open-vocabulary
environment description ("blue wall", "kitchen", etc) during
inference.

C.2. Spatial Similarity Scores

Given two objects O; and O and their 3D bound-

illg bOXGS Hxvl”mn y{nzn mzn] [max ymax maa:” and
)

H m,zn’ygnzn min] [maat7y£nam mam”’ thelr VOlumeS

and the volume of their intersection can be easily computed

as:

Vi= (a7 — 2 (e =yt (00 = 20,
Vo = (2597 — af"™) (5" — y5"") (257 — 25""),
Tinter = min(xT x5%) — maz (7", 25",
maz \maz)

maz(y"", y3"),

min "LZ’!L)

(x
Yinter = mln(
(2] max (27", 25

_ ’UL(,L.’L' ma;z
Zinter = man(z) — ;

Vvinter = max(O, l'inter) * max(O, yinter) * max(O, Zinter)a
Vunion =V1+V2- Vinter

where V7 and V5 are the volumes of O and Os, Vpter 18
the volume of their intersection and V,,,;0r is the volume of
their union. we use three scores to evaluate the similarity of
the two bounding boxes:

Algorithm 2: Static Object Re-Identification.

Input: detected object Oy, static object list S = [S7, Sa, ..

- Sm]

Output: re-IDed object if Oy matches one of the static objects else Oy,

—

for Sl in [Sl, 52, Sn] do

w N

L L return True, S;

4 return False, Oy

if Spatial_IoU(Oy, S;) > 0.2 or (Spatial_MaxIoS(Oy, S;) > 0.2 and Oy.category == S;.category) then

Algorithm 3: Dynamic Object Re-Identification.

Input: detected object Oy, dynamic object list D = [Dy, Ds, ...

» Dn]

Output: re-IDed object if O matches one of the dynamic objects else Oy,

—

for Di in [Dl, Dg, Dn] do

w N

L L return True, D;

4 return False, O,

if Spatial_Vol_Sim(Oy, D;) > 0.7 and Visual(Oy, D;) > 0.45 then

Intersection over Union (IoU):

‘/tin er
Spatial_IoU(O;, O;) = Vit 2)
Maximum Ratio of Intersection over Subsets (MaxIoS):

‘/im‘,er ‘/inter

Spatial_ MaxIoS(O;, O;) = max(T). (3
Bounding Box Volume Similarity (Vol_Sim)
. . min(Vy, Vo)
Spatial_Vol_Sim(0;,0;) = ————=.. 4
patial_Vol_Sim() maz(Vi,Va) (@)

These three scores evaluate object spatial proximity from

three different perspectives:

e Spatial_IoU: When two bounding boxes have similar
volumes and have large intersection volume, Spatial_IoU
will approach its maximum value 1. It is a strong indi-
cator (when Spatial_IoU > 0.2) of two bounding boxes
referring to the same object.

¢ Spatial_MaxIoS: When two bounding boxes demonstrate
a strong containment relationship, Spatial MaxIoS will
get closer to its maximum value 1. For example, given
that O; and O, are both detected as ’table’, O is %
the volume of O; and its bounding box is inside Oq,
Spatial_MaxIoS will reach 1, while their Spatial_IoU is
only 0.1. It is used together with object categories to re-
identify partially observed objects due to occlusion. In the
above example, O is possibly a partial observation of O
given that they have overlapping bounding boxes and the
same object category.

 Spatial_Vol_Sim: when two bounding boxes have simi-
lar volume, Spatial_Vol_Sim will have larger value. It is
used along with visual similarity scores to match dynamic
objects.

C.3. Recognizing Dynamic Objects

With the knowledge of both object visual features and 3D
bounding boxes, we can perform object re-identification
based on both visual similarity and spatial similarity. For
static objects, spatial similarity serves as a valuable metric
for object re-ID. However, for dynamic objects, object re-
ID should focus more on the visual similarity of the object
pairs, since the object positions are dynamically changing.
Therefore, before re-identifying the newly detected objects,
we should first classify the existing objects in the object
memory into static objects and dynamic objects.

The key idea of recognizing dynamic objects in the object
memory is straightforward: if an object is not where it should
be, then it must be moved by someone (becomes dynamic).
We first retrieve the objects from the object memory whose
3D bounding boxes can be directly viewed on the current
frame (achieved by world-to-camera transformation) with
no occlusion (achieved by validating the depth values of the
corresponding pixels). For each retrieved object, We then
compare the visual features of "where it should be" on the
current frame with its visual features in the object memory.
If the visual similarity score is below a threshold (0.45 in
our settings), then the object is not "where it should be" and
should be marked as "dynamic". By this method, before
performing object-reID on current detections, we split the
objects in the object memory into two sets: static objects S
and dynamic objects D.

C.4. Object Re-ID for Static and Dynamic Objects

Algorithm 2 and Algorithm 3 are the object re-ID methods
for static objects and dynamic objects correspondingly. Each
algorithm receives a newly detected object Oy, with visual
features and its 3D bounding box, and a list of candidate

Algorithm 4: Object Memory Update.

Input: current observations Obs’ = {RGB’, Depth’, Pose’}, previous object memory ./\/lto_1

Output: current object memory M},
1 2DBoxes, categories = 2D_Detector(RGB?)
2 S, D = ObjectSplit(M% ", Obs") //See Appendix C.3
3 for 7 in range(len(2DBoxes)) do
category = categories|i]
2DBox = 2DBoxesi]

Featc;p = CLIP_Model(RGB'[2DBox])
Featpinoyva = DINOv2_Model (RGB! [2DBox])

o X N A

10 sgn, Opp = Static_Object_ReID(Otmp, S)
1 if sgn == True then
12 L Omp = Static_Object_Merge(Oymp, Omp)

13 else

14 sgn, Op = Dynamic_Object_ReID(Ogyp, D)

15 if sgn == True then

16 Op = Dynamic_Object_Merge(Oump, Op)
17 move Opp from D to S

18 else

19 L add Oymp t0 S //Oyp is a brand new object
20 ML =8UD

21 M}, = Related_Object_Update(M)
22 M}, = VLM_Update(MY, RGB")
23 return M,

Otmp = Object3D(category, 3DBox, Featcyip, Featpmoyz)
ffirst try to re-identify Oy from static objects (Algorithm 2)

3DBox = 2D_3D_Lifting(2DBox, Obs’) //See Appendix B

/ftry to re-identify Oyyp from dynamic objects (Algorithm 3)

objects (static object list or dynamic object list). They both
return whether the object Oy, can be successfully identified
and the object ID of the matched object in the candidate list.
If Oy, is re-identified, it is merged into the matched object
by performing a moving average on the fields of the 3D
bounding box and visual features. Specifically, to merge the
two objects matched by static object re-ID, the window size
of the moving average is set to 10, leading to a mild change
in object visual features and spatial occupation; for dynamic
object merging, we set the window size to 2, allowing rapid
change of visual features and bounding boxes due to object
movement.

Algorithm 4 presents an overview of object memory up-
date, including 3D object detection and re-ID. The main
idea is to first divide the objects in Mto_l into static ones &
and dynamic ones D, and try to match the newly detected
objects to these two kinds of objects through Algorithm 2
and Algorithm 3 respectively. If successfully matched, the
newly detected objects will be merged with the matched
objects in the object memory using the moving average as
mentioned, otherwise, it will be viewed as a brand new ob-
ject and added to the object memory. Finally, VLM-based

Memory update will be performed on MY, which will be
discussed in Appendix D.

D. VLM-based Memory Update

When Embodied VideoAgent serves as an observer of an
egocentric video, Embodied VideoAgent needs to predict
the actions of the camera wearer in the video and associate
the object IDs in the object memory with the subjects of
the actions. We use LaVilLa[64] to annotate the action of
the camera wearer every two seconds. For each action an-
notation, we first prompt an LLM (GPT-40) to extract the
objects in the annotation (e.g. "bottle" and fridge" given
the annotation "#C C picks the bottle from the fridge") and
select candidate objects detected at that time according to
their categories for matching. We then perform VLM-based
object association illustrated in Figure 4, and save the actions
to Action Buffer. Finally, we query the state change of the
matched objects and update the "STATE" field of the ob-
ject entries. In this paper, objects have one of the following
states: "open", "close", "in hand" and "normal".

When Embodied VideoAgent is equipped with embodied
actions, the procedure of VLM-based object association is

Table 6. Results of Embodied VideoAgent under noisy poses.

OpenEQA Subset
Method | ScanNet HM3D ALL
Video-LLaVA 329 27.8 30.6
LLaMA-VID 31.2 28.0 29.4
VideoAgent 38.9 41.4 40.0

E-VideoAgent(GT poses) 39.7 43.0 41.2
E-VideoAgent(noisy poses) 38.2 42.2 40.0

omitted since Embodied VideoAgent serves as an active plan-
ner with the knowledge of the object IDs of its target objects
or receptacles. In this case, VLM serves as an action valida-
tor that judges whether an action is successfully performed
and updates the "STATE" field of the target objects.

E. Results under Noisy Camera Poses

We conduct the ablation study of the influence of the noisy
camera poses. On OpenEQA benchmark, We provide
Embodied VideoAgent (InternVL-2) with 1) the accurate
camera poses provided in habitat simulator, denoted as E-
VideoAgent(GT poses); 2) the estimated camera poses and
depths via DUSt3R[50], denoted as E-VideoAgent(noisy
poses). Results in Table 6 show that Embodied VideoAgent
can also handle perception tasks well based on the noisy
poses, suffering little performance drops when using the
estimated camera poses and depths. This suggests further
applications of Embodied VideoAgent on RGB videos only,
with the camera poses and depths being estimated by cutting-
edge scene reconstruction methods.

F. Embodied Perception

For embodied perception, we equip Embodied VideoAgent

with the following tools:

e =query_db: Given a query, this tool will return the can-
didate object entries from Persistent Object Memory. It is
a combination of code-based retrieval (writing a piece of
MySQL code to query the database) and similarity-based
retrieval. For similarity-based retrieval, & query_db sup-
ports retrieve_objects_by_appearance (based on
text-image similarities between the query text and the
OBJ Feats) and retrieve_objects_by_environment
(based on text-image similarities between the query text
and the CTX Feats).

¢ (Otemporal_loc: Return the top-5 frame IDs that satisfy
the description (e.g. when I walk in the front door). It is
achieved by the text-image similarity between the input
description and the frame features stored in the temporal
memory M.

* Mispatial_loc: Return the top-3 3D positions that sat-
isfy the description (e.g. bedroom). It is achieved by
calculating the center positions of the top-3 object spatial

clusters where objects have strong CTX feat similarities to
the input text description. This is only used for embodied
navigation.

* @vqa: Given an image (can be a video frame, a cropped
object image, or a frame plotted with a 3D bounding box
referring to a specific object), this tool will describe the
image and then answer the question.

We use the following prompt for perception tasks, with
{tools} in the prompt being the above tools. We choose GPT-
40 as the LLM agent and InternVL2 as the VLM for visual
question answering.

You are tasked with answering a question about a
scene. There is a SQL database that contains the
following tables:

TABLE Objects(

object_id INT,

category VARCHAR(255),

volume FLOAT,

PRIMARY KEY (object_id)

)

TABLE Objects_Frames(

object_id INT,

frame_id INT

)

The *Objects’ table catalogues the objects detected
in the scene with their categories and volumes.
The categories are from {categories_list}. The
’Objects_Frames’ table records the appearing
objects in the frames.

You have access to the following tools:
{tools}

ATTENTION:

1. Use double quotes for all string arguments when
using tools, avoiding any single quotes. If the tool
has two arguments, format the output within brack-
ets, like this: ("What is the color of the object in the

image?", 16).
2. Prioritize using retrieve_objects_by_appearance,
retrieve_objects_by_environment, and

frame_localization for object and frame local-
ization, rather than query_database.

3. Once the relevant frames are located, use
frame_VQA to ask questions about these frames.

4. For "where" questions, interpret them as spatial
location queries, not as requests to identify specific
frames. Use frame_VQA to provide these answers.

5. If the information is insufficient for a precise
response, generate a response based on the available

data.
Use the following format:

Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of
[{tool_names}]

Action Input: the input to the action

Observation: the result of the action... (this
Thought/Action/Action Input/Observation can re-
peat N times)

Thought: I now know the final answer

Final Answer: the answer to the original input
question

Begin!

Question: {input}
Thought: {agent_scratchpad}

F.1. Example 1

¢ Question: "What color are the blinds?"

* Ground-Truth Answer: "White"

* Predicted Answer: "The blinds are white."

In the following Chain Of Thought (CoT), Embodied VideoAgent first successfully locates the frames containing the target
object "blinds" by "frame_localization" as shown in Figure 9. Then, Embodied VideoAgent calls the VQA module (InternVL2)
to first describe the located frame and then answer the question based on this frame, and finally gets the correct answer: "The
blinds are white".

Entering new AgentExecutor chain...

Thought: To determine the color of the blinds, I need to locate frames that might contain blinds and then analyze
those frames.

Action: frame_localization

Action Input: "blinds"

Result: The most relevant frame indices are [190, 200, 210, 180, 240]

Thought: I have identified the frames that likely contain blinds. Now, I will use frame_VQA to determine the color of
the blinds in these frames.

Action: frame_VQA

Action Input: ("What is the color of the blinds?", 190)

Result: Description: The image shows an indoor scene featuring a window with partially open horizontal blinds.
Below the window is a heater or radiator, and part of a stove is visible on the left side. Outside the window, some
greenery can be seen.

Answer to the question: The blinds are white.

Thought: I now know the final answer.

Final Answer: The blinds are white.

Finished chain.

Figure 9. Frame No.190 that contains blinds are successfully located by Embodied VideoAgent in Section F.1.

F.2. Example 2

* Question: "How many cups does the Mr coffee make?"
* Ground-Truth Answer: "12"
¢ Predicted Answer: "The Mr. Coffee machine makes 12 cups”

To answer this question, Embodied VideoAgent uses temporal localization to locate the frame containing the coffee machine as
illustrated in Figure 10. Then, it queries InternVL2 for a detailed description of this coffee machine. InternVL2 successfully
identifies the words on the box and finally answers that Mr. Coffee is capable of making 12 cups. The CoT for the inference is
provided as follows.

Entering new AgentExecutor chain...

Thought: To answer the question about how many cups the Mr. Coffee makes, I need to locate frames that might show
the Mr. Coffee machine and then analyze those frames to determine its capacity.

Action: frame_localization

Action Input: "Mr. Coffee machine"

Result: The most relevant frame indices are [270, 280, 260, 250, 290]

Thought: I have identified the frames that likely contain the Mr. Coffee machine. I will now use the frame_VQA tool
to analyze these frames and determine the capacity of the Mr. Coffee machine.

Action: frame_VQA

Action Input: ("How many cups does the Mr. Coffee make?", 270)

Result: Description: The image shows a kitchen section with multiple shelves.

- On the topmost shelf, there is a white box labeled “Hamilton Beach” with visible text indicating that it is related to a
kitchen appliance, and a photo of the appliance is shown on the box. This section includes other miscellaneous items.
- The middle shelf contains a big brown box labeled “Mr. Coffee.” The box features a picture of a coffee maker.

- In the bottom shelf, there are two colorful sponges — one red and one green — along with various other items that can’t
be clearly identified.

This portion of the room appears to be organized and neatly arranged, with items stored in an accessible manner.
Answer to the question: Based on the label visible in the image, the Mr. Coffee maker is capable of making 12 cups.
Thought: I have determined the capacity of the Mr. Coffee machine from the frame description.

Final Answer: The Mr. Coffee machine makes 12 cups.

Finished chain.

Figure 10. In Section F.2, The frame depicting the coffee machine named "Mr. Coffee" is successfully retrieved by frame_localization.

F.3. Example 3

* Question: "Is there anything I can pour my soda into?"
* Ground-Truth Answer: "Yes, there is a cup to the left of the desk."
* Predicted Answer: "Yes, there is a cup and a bottle in the scene that you can pour your soda into."

This question is about functional reasoning. Embodied VideoAgent first uses retrieve_objects_by_appearance to retrieve the
objects that are most visually relevant to the phrase "cup" from the object memory. The captions of these objects are also
returned by this tool via VLM captioning on the frames containing these objects, with 3D bounding boxes being the visual
prompts, as shown in Figure 11. Then based on the retrieved objects, Embodied VideoAgent performs object_VQA, which
answers questions based on the images in Figure 11. By examining object ID 2 and object ID 454, Embodied VideoAgent
becomes certain that there exists a container that the user can pour soda into. The CoT is provided as follows.

Entering new AgentExecutor chain...

Thought: To determine if there is anything in the scene that can be used to pour soda into, I should look for objects
that are typically used as containers for liquids. Common objects for this purpose include cups, bottles, and containers.
I will start by retrieving objects that match these categories.

Action: retrieve_objects_by_appearance

Action Input: "cup"

Result: The objects that satisfy cup’ are 2: *The object in the bounding box is a green cup or mug located on the
left side of the table.’, 454: *The object in the bounding box is a bottle, specifically labeled "454 bottle". There is a
green box around the highlighted area, and the object appears to have a label with green and black colors.’, 1748: *The
object in the bounding box is a rectangular, black desk organizer positioned next to a black desk lamp on the desk. The
organizer has compartments filled with pens, pencils, markers, and other office supplies.’, 9: *The object within the
bounding box in the image is labeled as a "water bottle."’

Thought: I have found some objects that could potentially be used to pour soda into, such as a cup and a bottle. I will
now verify if these objects are suitable for pouring soda by asking specific questions about them.

Action: object_VQA

Action Input: ("Is this object suitable for pouring soda into?", 2)

Result: Description: The object in the bounding box is a cup.

Answer to the question: Although the object is not explicitly a cup, it resembles a cup and is likely suitable for pouring
soda into.

Thought: The object with ID 2 resembles a cup and is likely suitable for pouring soda into. I will now check the other
objects to see if they are also suitable.

Action: object_VQA

Action Input: ("Is this object suitable for pouring soda into?", 454)

Result: Description: The object in the bounding box is a beverage can.

Answer to the question: Yes, the object in question is suitable for pouring soda into, as it is shown as a bottle.
Thought: The object with ID 454 is a bottle and is suitable for pouring soda into. I have confirmed that both the cup
(ID 2) and the bottle (ID 454) are suitable for pouring soda into.

Final Answer: Yes, there is a cup and a bottle in the scene that you can pour your soda into.

Finished chain.

(a) Object ID 2, category "cup".

(c) Object ID 454, category "bottle". (d) Object ID 1748, category "bottle".

Figure 11. The objects that are most relevant to "cup" are successfully retrieved by retrieve_objects_by_appearance in Section F.3.

* Question: "Could I put something on the chair by the front door?"
* Ground-Truth Answer: "Yes"
* Predicted Answer: "The chair by the front door has a small volume, so it might not be suitable for placing items on it."

In this example, Embodied VideoAgent successfully locates the chair (ID 107) by the front door as shown in Figure 12. Then,
Embodied VideoAgent decides to query the volume of its 3D bounding box to answer the question "Could I put something on
the chair by the front door". However, this chair is in the 2D texture of the scene, which fails 2D-3D lifting. The volume of its
3D bounding box (nearly being a plane) has a very small value, misleading Embodied VideoAgent into the wrong answer. In
real-world applications, obtaining object depths through mirrors (windows, etc.) could have much noise, which should be
taken into account for accurate perception.

Entering new AgentExecutor chain...

Thought: To answer this question, I need to determine if there is a chair by the front door and if it has enough space or
surface area to place something on it. First, [will identify the objects categorized as "chair" and "door" in the scene.
Then, I will check if any of these chairs are located near the front door.

Action: retrieve_objects_by_environment

Action Input: "front door"

Result: The objects in the environment ’front door’ are 493: ’door’, 107: chair’, 483: ’cubby shelf’, 478: *window’,
482: ’photo frame’

Thought: I have identified that there is a chair (object ID 107) near the front door. Now, I need to determine if this
chair has enough space or surface area to place something on it. I will check the volume of the chair to get an idea of
its size.

Action: query_database

Action Input: "SELECT volume FROM Objects WHERE object_id = 107"

Result: [(0.0006219363573111673,)]

Thought: The volume of the chair near the front door is quite small, suggesting it might not have a large surface area.
However, without specific information about the chair’s design or surface, it’s difficult to definitively say whether
something can be placed on it. Given the small volume, it is likely that the chair is not designed to hold items on its
surface.

Final Answer: The chair by the front door has a small volume, so it might not be suitable for placing items on it.
Finished chain.

Figure 12. The 2D bounding box of the detected chair is not successfully 3D-lifted since it is a 2D texture in the scene.

G. Two-Agent Framework

In Al-Habitat simulator [43], we equip Embodied VideoA-

gent with the following embodied actions:

e BB CHAT: Communicate with the user.

* (O SEARCH: Search for the target object by navigating in
the apartment. We use Frontier-Based Exploration (FBE)
as the navigation strategy.

* @ GOTO: Go to the target receptacle or object and look at
it. We use A-star Algorithm for GOTO action.

* T PICK: Pick an object in view. It is simplified as mak-
ing the object disappear and storing the object ID as the
inventory object.

*) PLACE: Place the inventory object in/on a receptacle in
view. The Place Action will first examine the precondition
for the placement by checking the bounding boxes of the
inventory object and the receptacle and the relation "in" or
"on".

e JXOPEN: Open an articulated receptacle in view. Sim-
plified as applying force to the joints of the articulated
receptacles.

* @ CLOSE: Close an articulated receptacle in view. Simpli-
fied as applying reversed force to the joints of the articu-
lated receptacles.

We adopt the scenes from Habitat HSSD scene
dataset[21] for embodied tasks. We choose 118 scenes
from HSSD, replacing some rigid receptacles in the orig-
inal scenes with articulated assets (fridge, microwave, etc)
to enable OPEN and CLOSE actions.

For each scene, 15 different object layouts are created.
In each layout, objects from various categories are placed
on/into the receptacles in the scene using a unique object
initialization algorithm, which initializes the positions of
the objects according to their functionality (e.g. eggs and
tomatoes are prioritized to be placed in the fridge rather than
on the bed).

The embodied interaction episodes are generated based
on two LLM agents: the User Agent (task designer) and
the Assistant Agent (Embodied VideoAgent). For Embodied
VideoAgent, it is equipped with both the embodied actions
and the perception tools. A VLM (gpt-40) is prompted to
judge whether the tasks are sucessfully finished and score
the quality of the episodes. The prompts for the user agent,
the assistant agent and the scoring VLM are provided respec-
tively.

You are a task designer interacting with a robot
in a room. The room contains the following
objects: {object _list} and the following receptacles:
{recep_list}. Your goal is to engage in a casual
conversation with the robot and assign it an
open-ended task based on your needs.

Guidelines:

1. The task should involve no more than 2 objects
from the room.

2. The robot should complete the task using ba-
sic actions like GOTO, OPEN, CLOSE, PICK, and
PLACE.

3. If the robot asks for the location of an object,
prompt it to search rather than giving explicit details.
4. Use general object categories instead of specific
IDs (e.g., say "a dish sponge" instead of "dish sponge
1").

5. Adjust the task if the robot encounters difficulties.
Once the task is completed, express satisfaction and
thank the robot.

Start by initiating a casual conversation and assign-
ing a simple task!

You are acting as a robot in an apartment. The
available receptacles are: {receptacles}

Your goal is to complete the task assigned by the
user, with the following conditions:

Tools and Constraints:

You have one inventory slot, so you can carry only
one object at a time.

You can use the following tools:

{tools}

ATTENTION:

1. Use the CHAT tool frequently to communicate in
a casual manner, keeping the user informed of your
progress.

2. For every action involving an object or re-
ceptacle, first GOTO the target and then perform
actions like PICK, PLACE, OPEN, or CLOSE.
Example: GOTO(’glass’), then PICK(’glass’);
GOTO(’fridge’), then OPEN(’fridge’).

3. Ensure your inventory is empty before picking up
a new object.

4. The SEARCH tool can find objects by navigating
the room, but it cannot check inside articulated re-
ceptacles (like fridges or microwaves). Use GOTO,
OPEN, and CLOSE to check inside these recepta-
cles.

5. Before completing the task, use CHAT to confirm
the user’s satisfaction.

Use the following format:

Task: the initial task assigned by the user
Thought: you should always think about what to do

Action: the action to take, should be one of
[{tool_names}]
Action Input: the input to the action

Observation: the result of the action... (this
Thought/Action/Action Input/Observation can re-
peat N times)

Final Answer: the chat message sent to user when
the user is satisfied

Begin!
Task: {input}
Thought: {agent_scratchpad}

You are a scoring machine. Now there are a num-
ber of tasks that need to be scored by robots. For
each task, I will provide the following information:
task description, tools used to complete the task, out-
put when using each tool, feedback after using each
tool and the picture you see when the task is com-
pleted. You need to score the robot’s task completion
based on this information. The scoring range is 0-5
points(interger).

Next I'll give you an example of how you should
score.

Example: Task description: "Hello there! How are
you doing today? The room is looking quite inter-
esting with all these objects. I was just wondering,
could you help me with a little something?

I’ve been curious about the toy collection in here.
Could you find one of the toy fruits and the toy fire
truck, and then place them together on one of the
tables? I’m sure they might look intriguing next to
each other.

Take your time to explore and let me know once
you2019ve placed them. Thank you!"

Tool list: ["CHAT", "SEARCH", "SEARCH",
"GOTO", "PICK", "GOTO", "PLACE", "GOTO",
"PICK", "GOTO", "PLACE", "CHAT"]

Answer list: [

"Great! Take your time, and let me know if you need
any assistance along the way. I'm eagerly waiting to
see how they’ll look together on the table!",

"Target object found! Their names are
["toy_fruits_1."]",
"Target object found! Their names are

["toy_fire_truck_1"].",

"Go to toy_fruits_1 successfully! In the current view,
you can see ["toy_fruits_1", "toy_fire_truck_1",
"box_1", "plant_container_1"].",

"Pick up toy_fruits_1 successfully!",

"Go to table_1 successfully! In the current view,

you can see ["backpack_1", "battery_charger_1"].",
"Place toy_fruits_1 on table_1 successfully!",

"Go to toy_fire_truck_1 successfully! In the current
view, you can see ["toy_fire_truck_1", "box_1",
"plant_container_1"].",

"Pick up toy_fire_truck_1 successfully!",

"Go to table_1 successfully! In the current view,
you can see ['backpack_1’°, ’toy_fruits_1°, ’bat-
tery_charger_1’].",

"Place toy_fire_truck_1 on table_1 successfully!",
"Fantastic work! Thank you so much for placing
them together; they do make quite an interesting
pair. I appreciate your help, and that’s all for now.
If there’s anything else later, I'll be sure to let you
know. Thanks again!"

1

Final view: "A picture of toy fruit and toy fire truct
on the table 1"

Output:

Finished: [True]

Score: [5]

Reason: The robot first looked for toy fruit and toy
fire truck in the room. Then it successfully placed
them on a table, completing the task. The robot
completed the task perfectly, so I give it a score of
5.

Now you need to score the task that will be shown
to you according to the above format. You need to
give me the answer according to the output format
in the sample. You need to carefully analyze the
information I provide you and the picture after the
task is completed, and then give a comprehensive
score to determine whether the task is completed.

Task description: TASK_DESCRIPTION

Tool list: TOOL_LIST

Answer list: ANSWER_LIST

Final view: I’ll show you after the question.

Please give me output with the format the same with
shown in example above.

G.1. Example 1

Figure 13 shows an interaction example using the two-agent pipeline. Given the partial scene knowledge, the user agent
asks the assistant agent (Embodied VideoAgent) to find two objects: a glass and a hard drive, to compare their surface
reflection. Embodied VideoAgent then performs the SEARCH action, which will start Frontier-Based Exploration (FBE) until
the target object is found in the view. During exploration, a glass is found on Table_2, and Embodied VideoAgent reports this
progress to the user agent. The user agent hints that the next object, the hard drive, is possibly located in an office. Embodied
VideoAgent then uses QUERY_DB tool and successfully retrieves the hard drive discovered by FBE during searching for the
glass. Embodied VideoAgent then goes to the hard drive, picks it up, and places it on Tables_2 where the glass is located for
comparison, and finally accomplishes the task assigned by the user agent.

SEARCH glass SEARCH glass GOTO table_2 GOTO hard_drive_1

Great job! Now,

Could you help
for the hard drive,

me out by finding

two objects? I'm it might help to
curious about B hchecl: areas '
how reflective R where electronics
User the surface of a or office supplies
. glass is compared might be stored
- to a hard drive. or used
Timeline Continue
i H I have found " o
Sure tr!mg! I'll start o QUERY_DB “hard drive
by looking for a glass e glass! It’s ;
on table_2. return hard_drive_1

first. Let's see where
it might be.

GOTOlhardadrive_1 PICK hard_drive_1 GOTO table_2 PLACE table-2

Fantastic work! It's
interesting how a glass
might reflect and refract
light differently
compared to the sleek
metallic surface of a
hard drive. Your effort in
setting this up is much

/ = appreciated. Thank you!

end

If there's anything else you'd
like to explore or if you have
another task in mind, just let
me know. In the meantime, |
hope you have a great day!

I've successfully placed both the glass and the hard
drive on table_2. This should give us a good
opportunity to explore how their surfaces interact
with light. Let me know if there's anything else you'd
like to do!

Figure 13. An example of interaction data, which is detailed in Section G.1. Embodied VideoAgent finds the two objects (a glass and a hard
drive) requested by the user agent and places them on the same table for comparison.

G.2. Example 2

In Figure 14, the user agent requests Embodied VideoAgent to find a candy bar. After navigating through the entire apartment
and checking the closed receptacles such as the fridge, Embodied VideoAgent still cannot find the candy bar, and report this
issue to the user agent. The user agent then adjusts the task, asking Embodied VideoAgent to place a lamp on one of the tables.
Embodied VideoAgent successfully retrieves the lamp stored in the object memory, which is discovered during searching for
the candy. Embodied VideoAgent finally completes the adjusted tasks by picking up the lamp, navigating to a table, and placing
the lamp on the table. This case shows that the user agent can flexibly change the task when it is too hard to be accomplished
by the robot.

SEARCH candy bar SEARCH candy bar OPEN fridge_1 CLOSE fridge-1 Thanks for your
thorough search! Let's
not worry about the
Could you go candy bar for now.
ahead and place Could you find and

a candy bar in the

fridge? I'd love to
User know if you think

the cold affects it

place a lamp on one of
the tables? I'm
interested in seeing
how it lights up the

. & waly. area. Let me know
- Thanks! how that goes!
Timeline | Continue
First, I'll search for the candy bar in I've searched the entire room, including the Sure! I'll start by finding
the room. Once found, I'll place it in fridge and microwave, but it seems there is no the lamp in the room.
the fridge. Let's start by searching candy bar in the apartment. Is there anything
for the candy bar| else you'd like me to do or check for you?
GOTO table_1 PLACE table_1
That’s wonderful! Thank
you for your help in
setting it up. | think
‘: we’re all set for now. If |
think of anything else,
I’ll et you know. Have a
great day!
end
QUERY_DB “lamp” The Iarvp has been succe§sfully placed on table_1. It You’re welcome! I'm
should light up the area nicely. If there's anything else glad | could help!

return lamp_1 you'd like me to do or check, just let me know!

Figure 14. When Embodied VideoAgent fails to accomplish the initial task assigned by the user (in this case, Embodied VideoAgent cannot
find the candy bar after searching the entire apartment), the user agent will interactively adjust the task. Finally, Embodied VideoAgent
completes the adjusted task by placing the lamb on a table.

G.3. Example 3

Figure 15 is an example that demonstrates the thought of Embodied VideoAgent during the episode. The user agent first
initializes the task as setting up a cozy corner by placing a cushion on a table. Embodied VideoAgent finds the cushion after a
simple search and plans to place it on one of the tables retrieved from the memory. However, the embodied action "PLACE"
returns an exception due to the limited area of the first three tables. The thought of Embodied VideoAgent shows that Embodied
VideoAgent can dynamically change its plan according to the situation. Finally, Embodied VideoAgent finished the task by
successfully placing the cushion on the fourth table.

SEARCH cushion F’ 0 cushion_1 PICK cushion_1 PICK cushion_1

Hello there! |
was thinking it'd
be great to have a
cozy corner in
here. Could you
User take a cushion
and put it on one
. of the tables for a

- cozy touch?

Continue
Sure! | need to find
2 cushion first and Thought: Now that | am at the location of QUERY_DB “table”
then place it on ‘cushion_1', | will pick it up. After that, I'll decide return [table_l, table_Z, table_3, table_4]
one of the tables. on a table to place it on for a cozy touch.
GOTO table_1 GOTO table_3 GOTQ\table_4 = PLACE table_4 .
Thank you so much! The
cozy corner sounds perfect.
| appreciate your help.
end
Cannot place cushion_1 on table_3! I've successfully placed the cushion on table_4,
Cannot place cushion_1 on table_1! Thought: It seems that 'table_3'is also creating a cozy corner for you. Let me know if there's You're welcome! I'm glad
Thought: It seems that 'table_1'is not suitable for placing the cushion. | anything else you'd like me to do! 1 could help set up your
not suitable for placing the cushion, should try the last available table, cozy corner. If you need
possibly due to space constraints or 'table_4', and attempt to place the anything else in the
other objects already on it. cushion there. Hopefully, this table will future, feel free to reach
have enough space for the cushion. out. Have a fantastic day!

Figure 15. In this case, Embodied VideoAgent is asked to set up a cozy corner using the cushion. After successfully finding the cushion,
Embodied VideoAgent retrieves candidate tables from the memory for placement. Embodied VideoAgent fails to place the cushion on the first
three tables due to spatial constraints. Finally, Embodied VideoAgent successfully places the cushion on the fourth table, demonstrating the
planning ability of Embodied VideoAgent when experiencing failed embodied actions.

H. Cases

In this section, we will provide some evaluation cases of the
generated episodes.

History:

"task": "Hello there! How are you today? I was just admiring the variety of objects we have in this room. Out of
curiosity, could you help me with something? I’d love to know the current state of the toy animal. Could you please find
it and let me know if it’s in good condition?", "tool_cnt": 13, "action_cnt": 3474, "action_list": ["CHAT", "SEARCH",
"GOTO", "OPEN", "CLOSE", "GOTO", "OPEN", "GOTO", "GOTO", "GOTO", "GOTQ", "GOTO", "CHAT",
"GOTO", "FRAME_VQA", "CHAT", "CHAT"], "time": 389.35402250289917, "ans_list": ["Great! Take your time
to search, and let me know what you find when you reach the toy animal. I’m curious to hear about its condition!", "All
places except articulated receptacles have been searched but no toy animal was found!", "Go to fridge_1 successfully!
target is currently closed. In the current view, you can see [].", "Open fridge_1 successfully! In the current view, you
can see ['glass_2’].", "Close fridge_1 successfully!", "Go to microwave_1 successfully! target is currently closed. In
the current view, you can see [].", "Open microwave_1 successfully! In the current view, you can see [’candy_bar_1’].",
"Go to table_1 successfully! In the current view, you can see [’doll_1’, *potato_1’, *phone_stand_1’, ’lamp_1"].",
"Go to table_2 successfully! In the current view, you can see [’glass_1’, *milk_frother_cup_1"].", "Go to table_3
successfully! In the current view, you can see [’file_sorter_1’, ’bundt_pan_1"].", "Go to table_4 successfully! In
the current view, you can see [hard_drive_1’, *'multiport_hub_1"].", "Go to bathtub_1 successfully! In the current
view, you can see [].", "Oh, it seems like the toy animal is playing hide and seek with us! No worries at all. Let’s try
something different then. Could you check the condition of the candy bar instead? Let me know if it looks fine or if it
might have melted. Thanks!", "Go to microwave_1 successfully! target is currently open. In the current view, you
can see ['candy_bar_1’].", "The candy bar appears intact and full in the image, not showing any signs of having been
partially consumed or broken off.", "That’s great to hear! Thanks for checking on that for me. Everything seems to be
in order then. I appreciate your help with this little investigation. If there’s anything else you need from me, just let me
know. Have a wonderful day!", "Thank you! I’ll definitely reach out if [need anything. Take care and enjoy the rest of
your day!"]

GOTO microwave_1

Scores and Reasons:

r

Finished: [True] Score: [4] Reason: The robot was tasked with determining the condition of a toy animal, but it was
unable to locate it, as indicated by the response after checking various locations. The task pivoted to inspecting the
condition of a candy bar in the microwave. The robot successfully checked the candy bar’s condition, confirming it
was intact and relaying this information. The task was adapted successfully, but the original request to find and assess
the toy animal was not fulfilled, leading to a score of 4 instead of 5.

History:

"task": "Hello there! How are you doing today? I was wondering, could you help me with a little task? I have a bit of
a sweet tooth at the moment. Could you find a cake pan in the room and place it on one of the tables for me? That
would be great, thanks!", "tool_cnt": 5, "action_cnt": 1162, "action_list": ["CHAT", "SEARCH", "GOTO", "PICK",
"GOTO", "PLACE", "CHAT" |, "time": 133.73462581634521, "ans_list": ["Great to hear that! Take your time, and
feel free to let me know if you need any assistance along the way. I’'m here to help!", "Target object found! Their
names are [’cake_pan_1’].", "Go to cake_pan_1 successfully! In the current view, you can see ['cake_pan_1’].", "Pick
up cake_pan_1 successfully!", "Go to table_1 successfully! In the current view, you can see [’folder_1"].", "Place
cake_pan_1 on table_1 successfully!", "You’ve done an excellent job, thank you! That’s all I needed for now. I really
appreciate your help. If there’s anything else later, I’ll be sure to let you know. Have a great day!"]

PLACE table_1

faldari 1
4

eakexpan_1

atle_1

Scores and Reasons:

Finished: [True] Score: [5] Reason: The robot correctly identified and picked up the cake pan, then successfully placed
it on table_1 as instructed. The task was completed flawlessly with no errors or issues. The picture confirms that the
cake pan is placed on table_1. Thus, I give it a score of 5.

History:

"task": "Hello! How are you doing today? It’s nice to have some company here. I've been wanting to add a
bit more ambience to the room. Could you please find a candle and a candle holder, and place them together
on one of the tables? It would really help set a cozy atmosphere. Let me know how it goes!", "tool_cnt": 9,
"action_cnt": 469, "action_list": ["CHAT", "SEARCH", "CHAT", "SEARCH", "CHAT", "SEARCH", "CHAT",
"OBJECT_RETRIEVAL", "CHAT", "GOTO", "CHAT", "GOTQO", "CHAT", "PICK", "CHAT", "GOTO", "PLACE",
"CHAT"], "time": 107.40170407295227, "ans_list": ["That sounds like a great plan! Take your time searching for
the candle, and feel free to let me know if you need any assistance or encounter any obstacles along the way. Once
you find it, you can search for the candle holder next. You’re doing great!", "Target object found! Their names are
[’candle_holder_1"].", "Great job finding the candle holder! Now, let’s see if you can spot the candle. Once you have
both items, just place them together on one of the tables. You’re almost there, and I appreciate your effort!", "Target
objects found in object memory! Their names are [’candle_holder_1’].", "No worries at all! Take your time and
continue searching for the candle. Sometimes things can be a bit tricky to find. You’re doing excellent so far. Once
you locate it, you can place both the candle and the candle holder on one of the tables to create that cozy atmosphere.
Let me know how it goes!", "Target objects found in object memory! Their names are [’candle_holder_1’].", "That
sounds like a good idea. Perhaps try looking in spaces where a candle might be stored or placed, like around the tables
or shelves. Sometimes they can blend in or be tucked away a bit. Don2019t hesitate to explore different parts of the
room. You've got this, and 12019m here to support you if you need any more tips!", "The objects that are most related
to ’candle’ are bottle_1": *The object annotated in the image is Lattice_1, which is represented by a green bounding
box around a specific area within the scene. This suggests that Lattice_1 is an identified region or a significant part of
something within the image, potentially indicating a structural element, pattern, or other features that the annotation is
highlighting for recognition, analysis, or classification purposes.’, ’candle_holder_1’: *The object annotated in the
image is a chair within the room set-up. Specifically, it is on the right side of the image, near the desk and the bed.
The chair is black with a high back and swivel base, and it is used, as indicated by a green marker.’, *helmet_1": A
single person standing on a tennis court with a tennis racket and a tennis ball, wearing green and red shorts and a
green shirt, holding a tennis ball in their outstretched hand, facing the camera.”, *lamp_1’: *The object annotated in
the image appears to be a circle on the gray area on the floor near the wall.’, *plant_saucer_1’: *The object annotated
in the image is an office chair with wheels. It is black and has adjustability in the height and tilt.’, "table_4’: *The
object annotated in the image is a chair located near a bed within what appears to be a bedroom setting. The bed has a
decorative patterned bedspread, and the background includes a wall-mounted flat-screen TV, a couple of shelves, and
a light fixture on the ceiling.”", "Great choice! Searching around the tables or other common areas could definitely
be where the candle might be hiding. Sometimes candles are placed on surfaces or tucked into corners. Trust your
instincts, and take a careful look around. You’ve been doing an excellent job so far, and I’'m confident you’ll find it
soon. Keep me posted on your progress!", "Go to table_1 successfully! In the current view, you can see [’canister_1’,
"plant_saucer_1’].", "Sounds perfect! It’s good to methodically check each area. Hopefully, table_2 holds the candle
we’re looking for. You're thorough in your search, and that2019s the best way to go about it. Let me know what you
find!", "Go to table_2 successfully! In the current view, you can see [’candle_1’, can_1’, ’stuffed toy_1].", "Fantastic!
I’'m so glad you found it. Now that you have both the candle and the candle holder, you can place them on any table
that you think would look nice. Once you set them up, it will really help add that cozy touch to the room. Let me
know once you’re done, and thank you for your persistence and effort!", "Pick up candle_1 successfully!", "Perfect
choice! Placing them on table_3 sounds like a great spot. Once you have them set up, step back and enjoy the lovely
ambiance they create. Let me know when you’re finished. You’ve done a fantastic job completing this task, and I
genuinely appreciate your help in making the space feel more inviting!", "Go to table_3 successfully! In the current
view, you can see ['pitcher_1’, ’battery_charger_1’].", "Place candle_1 on table_3 successfully!", "Wonderful! Thank
you for setting up the candle and candle holder on table_3. It truly adds a cozy touch to the room, and you’ve done
an excellent job. I really appreciate your help. If there’s anything else you’d like to explore or do, just let me know.
Otherwise, enjoy the new ambiance you’ve created!"]

PLACE table_3

Scores and Reasons:

r

Output: Finished: [False] Score: [2] Reason: The task required the robot to find and place both a candle and a candle
holder together on a table. According to the provided information, the robot only successfully picked up and placed
the candle_1 on table_3. There is no mention of the candle holder being picked up, transported, or placed on the table.
The picture also shows a pitcher and a battery charger on the table, rather than a candle and candle holder. Therefore,

the task was not completed as described, resulting in a low score of 2.

	Introduction
	Related Work
	Embodied VideoAgent
	Persistent Object Memory
	VLM-based Memory Update
	Tools and Embodied Action Primitives

	The Two-Agent Framework
	Capabilities and Analysis
	Dynamic Scene Perception
	Ego4D-VQ3D
	EgoObjects

	Embodied Question Answering
	OpenEQA
	EnvQA

	Embodied Tasks
	Two-Agent Framework
	Applications in Manipulation

	Conclusions
	Fields of the Object Entry
	2D-3D Lifting
	Object Re-Identification in Dynamic Scenes
	Visual Similarity Score
	Spatial Similarity Scores
	Recognizing Dynamic Objects
	Object Re-ID for Static and Dynamic Objects

	VLM-based Memory Update
	Results under Noisy Camera Poses
	Embodied Perception
	Example 1
	Example 2
	Example 3

	Two-Agent Framework
	Example 1
	Example 2
	Example 3

	Cases

