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Figure 1. Interface of the autofocus test program. LabVIEW is
used for data acquisition, with communication to the Python pro-
gram via the TCP protocol. The right side shows the image at the
initial position.

1. Deviation of Sharpness Curves

This section presents additional results on distance and
sharpness estimation, focusing on the standard deviation
(STD) and root-mean-square error (RMSE) of predictions at
various positions. Fig. 2a illustrates the deviation observed
at both severe and less severe defocus positions. The blue
bars represent the distribution of distance predictions for the
test samples, while the red line shows the Gaussian fitting
curve. As seen, the more severe the defocus, the larger the
deviation.

Fig. 2b depicts the relationship between the standard de-
viation and the focus level. Interestingly, within the in-focus
range, where sharpness approaches 1, the distance predic-
tion demonstrates higher uncertainty compared to adjacent
positions. This observation highlights that even within the
depth-of-field (DoF), the deep learning model struggles to
accurately determine the focus level. The drop at the left-
most end of the curve is due to the boundary constraint.
Similarly, Fig. 2c reveals a comparable trend. The RMSE
of sharpness estimation decreases as the measurements ap-
proach the focal plane. The drop at the boundary is again
caused by the constraint.

The larger deviation observed in defocused regions ne-
cessitates multiple adjustment steps in the proposed autofo-
cus (AF) method. To achieve fewer or one-shot AF system,
the deviation of distance estimation must be minimized.
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Figure 2. (a) Deviation of distance estimation. The Y-axis means
the number of prediction results at a certain range. (b) STD of
distance estimation. (c) RMSE of Flat Samples.

2. Sharpness Consistency

The inconsistency of sharpness values in conventional
methods is one of the root causes for the need for peak
searching. In comparison, the proposed sharpness method
demonstrates outstanding consistency, especially within the
in-focus range. Fig. 3c shows the sharpness curve calcu-
lated using the conventional squared gradient algorithm [6].
For clarity, we only present results of nine focus stacks un-
der bright, normal, and dark illumination conditions. As
illustrated, the sharpness peaks vary significantly across dif-
ferent illumination settings. To measure sharpness consis-
tency, we calculate the ratio of the peak sharpness values,
defined as:

SR =
Speaks

min(Speaks)
(1)

where Speaks represents the peak values of each test focal
stack. This metric reflects the relative value of peak sharp-
ness across focus stacks. Fig. 3d shows that, under the con-
ventional method, the in-focus sharpness of bright samples
is 3.5 to 4.5 times higher than that of dark samples. Even
under the same illumination condition, peak values can vary
by more than 20%. This uncertainty creates challenges in
identifying the sharpest value in a focus stack.



In contrast, Fig. 3b illustrates the sharpness ratio for the
proposed method. It demonstrates that, even under vary-
ing illumination conditions, the in-focus sharpness values
remain consistent, fluctuating by less than 1%. This feature
not only improves AF efficiency but also enables accurate
identification of the in-focus region, serving as a reliable
stop condition for AF applications.

3. Real Multi-Altitude Samples
This section presents additional features of our method. Us-
ing real-world multi-altitude data, which were not part of
the training sets. Fig. 4 shows an image alongside its cor-
responding sharpness map. The anodized samples consist
of three distinct flat altitudes. Our proposed method effec-
tively separates these areas and identifies the in-focus re-
gion.

This capability has potential applications in auto-
labeling for each region of interest (ROI) and enabling AF
for each ROI. Each ROI corresponds to a different altitude
of the sample, making multi-altitude AF feasible, as Fig. 4a
shows.

In addition, the sharpness map demonstrates potential
for enhancing focus stacking technology. Focus stacking
[1, 4], also known as multi-focus image fusion [2, 3], com-
bines images taken at different focus settings to reconstruct
an extended DoF or produce an all-in-focus image. This
technique is often used in photography and microscopy ap-
plications [4, 5]. Focus stacking typically requires dense
sampling to achieve optimal results. By using the sharp-
ness map, the meaningful range for sampling can be located
more efficiently, reducing the need for dense sampling. This
represents a promising future application of the proposed
sharpness estimation method.

4. Sharpness and End-to-End DE
Due to the inherent uncertainty in optical defocus, direct
end-to-end distance estimation (DE) models can produce
incorrect predictions regarding the direction from the focal
plane. In our test sets, approximately 20% of the predictions
are observed to be incorrect.

Fig. 5 presents the analysis performed with the scaled
optical-based sharpness curve proposed in this study. Cor-
rect predictions are marked in blue, while incorrect predic-
tions are highlighted in red. The scaled sharpness curve is
represented by the green line. The results show that the end
of the incorrect predictions (red points) lies higher than the
leftmost end of the correct predictions (blue points). Which
is consistent with the optical-based sharpness curve. This
trend indicates that the direct end-to-end DE model inher-
ently aligns with the optical-based assumption, further sup-
porting its validity.

These findings demonstrate that our optical model-based
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Figure 3. (a) Proposed sharpness curve. (b) Sharpness ratio of
the proposed method (c) Conventional sharpness curve by Squared
Gradient algorithm (d) Sharpness ratio of conventional method.
For visual conciseness we only present 9 samples of conventional.
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Figure 4. (a)Framework for multi-altitude autofocus(b)Images of
real-multi-altitude samples

approach effectively reduces the uncertainty for deep learn-
ing models when learning from defocus images, thereby en-
hancing autofocus application.
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Figure 5. End-to-End DE with Scaled Optical-based Sharpness
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