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Algorithm 1 Summary of the pipeline
Input: Source domain data DS , target domain data DT

1: Fine-tune Stable Diffusion [45] on both DS and DT

using domain-specific prompts
2: Generate synthetic images xGS and extract stacked

cross-attention maps ÃGS for the source domain
3: Generate synthetic images xGT and extract stacked

cross-attention maps ÃGT for the target domain
4: Train a detector FS(·; θ) on DS

5: Run FS(·; θ) on DS to obtain pseudo labels yGS

6: Train a detector FA(·; θ) on
(
ÃGS , yGS

)
7: Run FA(·; θ) on ÃGT to obtain pseudo labels yGT

8: Train the final detector F T (·; θ) on
(
xGT , yGT

)
9: Test F T (·; θ) on real target domain images from DT

A. Methods
In this section, we present a summary of steps regarding our
proposed pipeline, as shown in Algorithm 1.

B. Datasets
In this section, we provide additional details and examples
of the LINZ and UGRC datasets. Figure 8 illustrates the
geographic regions from which our data samples were ob-
tained. The LINZ online platform captured aerial imagery
from nine areas in Selwyn. For dataset construction, we
designated one of these nine areas as the testing region,
from which test set images were sampled, while the remain-
ing eight areas were used for training and validation sam-
ples. Similarly, the UGRC online platform collected aerial
imagery from seven regions in Utah. One of these seven
areas was designated as the testing region, with the remain-
ing six serving as sources for training and validation data.
This spatial partitioning strategy ensures that our datasets
do not suffer from data leakage, as the training and testing
areas are spatially independent. Within each area, we ran-
domly sample square images of size 112 px × 112 px. Due
to the sampling strategy, a single vehicle can appear in mul-
tiple images. Figure 7 presents the subcategories within the
small vehicle class. Except for the Pickup truck category,
all other small vehicle subcategories fall under the broader
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Figure 7. Vehicles belonging to the object class small vehicle.

classification of cars. Accordingly, we utilize the word
“car” in prompts to guide the Stable Diffusion [45] dur-
ing image generation, leveraging its pre-trained perceptual
understanding related to cars. Figure 9 provides visual ex-
amples of both LINZ and UGRC images, highlighting dis-
tinct visual characteristics: UGRC includes a notable pro-
portion of off-road vehicles, reflecting its sandy and rocky
terrain, while LINZ images primarily feature urban vehi-
cles within structured road networks. Lastly, Figure 10
compares the performance of four object detectors under
two settings: cross-dataset evaluation (trained on LINZ and
tested on UGRC) and within-dataset evaluation (trained and
tested on UGRC). The results show that within-dataset per-
formance surpasses cross-dataset performance by at least



(a) Selwyn (New Zealand) (b) Utah (USA)

Figure 8. Geographic regions where we construct LINZ and UGRC datasets. Red bounding boxes denote the testing area.

25.7% higher AP50 across all detectors, underscoring a sig-
nificant domain gap between the two datasets.

Method Vision Backbone LINZ→UGRC
Precision(%) Recall(%)

Vision Large Language Model
Gemini 1.5 Flash [55] - 2.9 44.5
Gemini 2.0 Flash-Lite [54] - 6.6 26.3
InternVL3-8B [74] InternViT [74] 4.7 22.0
Qwen2.5-VL-7B [1] ViT [1] 0.4 4.8
DeepSeek-VL2-Tiny [62] SigLIP-SO400M [67] 9.2 26.8
LLaVA-NeXT [29] CLIP ViT [41] 5.5 4.7

Ours Faster R-CNN [44] 63.8 68.2
Ours YOLOv5 [14] 67.2 67.3
Ours YOLOv8 [43] 70.0 76.3
Ours ViTDet [24] 72.0 67.1

Table 3. Comparison between our methods and VLLMs on UGRC
dataset. We report the precision and recall metrics.

C. Limitation of Foundation Models
In this section, we provide more examples of limitations of
various types of foundation models, including open-set de-

tectors, diffusion models, and vision large language models,
when detecting small vehicles in aerial view images.

C.1. Open-set Detectors
As shown in Figure 13, Grounding-DINO [30] often de-
tects cars in background images. OmDet-Turbo [71] and
OWLv2 [33] often produce false positives by misclassify-
ing objects such as rectangular tanks and boxes, which share
visual similarities with cars. OWL-ViT [32] fails to detect
any cars in aerial images, highlighting its limitations in this
specific context. These findings underscore the challenges
faced by open-set object detectors in accurately identifying
vehicles in aerial imagery.

C.2. Diffusion Models
As shown in Figure 15 (a), when employing the pre-trained
Stable Diffusion [45] with the prompt “an aerial image with
cars in Utah”, the model fails to understand the geograph-
ical reference to “Utah” and does not generate images re-
flective of the state’s landscape. Additionally, Stable Dif-
fusion struggles with generating small objects such as cars
in aerial images, resulting in low-quality vehicle depictions.
ControlNet [68] may also fail to effectively guide the gener-



Figure 9. Examples of images from our real-world datasets. (first row) LINZ images containing small vehicles; (second row) LINZ
images without vehicles; (third row) UGRC images containing small vehicles; (fourth row) UGRC images without vehicles;
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Figure 10. Comparison between cross-dataset generalization and within-dataset performance. The purple bars represent the model
trained on the LINZ dataset and evaluated on the UGRC dataset, while the pink bars correspond to both training and testing conducted on
the UGRC dataset. We report the AP50 result.

ation direction, leading to outputs that do not align with the
provided edge and segmentation map conditions. As shown
in Figure 15 (b), DoGE [58] frequently fails to generate
cars and surroundings in the precise locations correspond-
ing to the input LINZ image under the guidance of canny
edges and semantic segmentation maps. Moreover, with-
out finetuning on UGRC images, DoGE fails to encode the
domain difference by modeling the average CLIP [41] im-
age embedding difference and is unable to produce images
that accurately reflect Utah’s landscape. Figure 15(c) illus-
trates that even after fine-tuning GLIGEN [25] on UGRC
data, the model frequently fails to comply with the specified

bounding box layout conditions. It often generates extrane-
ous cars outside the designated bounding boxes or omits
cars within the expected bounding areas. These limitations
highlight the challenges associated with ensuring diffusion
models faithfully adhere to spatial and semantic constraints
in conditioned image generation.

C.3. Vision Large Language Models

We evaluate the capabilities of Vision Large Language
Models (VLLMs) for car presence classification and center
localization (VLLMs), as shown in Figure 11 and Table 3.
For classification, BLIP2 [21] generates captions based on



non-car images
(422,270 imgs)

car images
(15,919 imgs)

Predicted label

no
n-

ca
r i

m
ag

es
(4

35
,5

60
 im

gs
)

ca
r i

m
ag

es
(2

,6
29

 im
gs

)

Tr
ue

 la
be

l

421,827 13,733

443 2,186

Absolute
quantities

non-car images
(422,270 imgs)

car images
(15,919 imgs)

Predicted label

96.85% 3.15%

16.85% 83.15%

Normalized
w.r.t. true labels

non-car images
(422,270 imgs)

car images
(15,919 imgs)

Predicted label

99.90% 86.27%

0.10% 13.73%

Normalized
w.r.t. predicted labels

(a) LINZ - BLIP2 Image Captioning
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(b) LINZ - Kosmos2 Image Captioning
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(c) UGRC - BLIP2 Image Captioning
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(d) UGRC - Kosmos2 Image Captioning

Figure 11. VLMs captioning capabilities analysis tested on LINZ
and UGRC datasets.

the images while Kosmos2 [39] is prompted to complete
the sentence “an aerial image of {}”. We consider a model
to have predicted the presence of a car in an image if the
generated caption includes the word “car”. As shown in
Figure 11 (a), only 13.73% of the images predicted to con-
tain cars by BLIP2 are true positives in the LINZ dataset.
A similar trend is observed in Figure 11 (b), (c) and (d),
where the true positive rates for predicted car images are
38.59%, 7.18%, and 16.70%, respectively. Furthermore,
among all images that contain cars, only 52.38% are cor-
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Figure 12. Two popular VLLMs (BLIP2 and Kosmos2) tested as
zero-shot image car presence classifier. The severe imbalance of
the positive and negative classes causes the high levels of accuracy,
which is deceptive. F1 score, Precision and Recall metrics clearly
show that the classification quality is less than ideal.

rectly identified by BLIP2 in the UGRC dataset, as shown
in Figure 11 (c). A similar trend is observed in Figure 11
(d), where 47.02% of all images that actually contain cars
are correctly predicted by Kosmos2. Figure 12 supports that
VLLMs struggle to accurately detect cars in aerial imagery
by presenting the F1 score, Precision, and Recall metrics of
their classification performance.

For localization, we assess the detection performance of
VLLMs as shown in Table 3. Since VLLMs do not pro-
vide confidence scores for the predicted bounding boxes,
we define detection accuracy as the proportion of predicted
bounding boxes that achieve an Intersection over Union
(IoU) greater than 0.5 with at least one ground truth bound-
ing box. Based on this definition, we compute precision and
recall, which are reported in Table 3. To establish pseudo la-
bels on the UGRC test set for our method, we set the detec-
tion threshold according to the highest F1 score achieved by
each detector on UGRC test set. Under this setting, VLLMs
exhibit significantly lower performance compared to our
method, often producing a large number of false positives
in aerial imagery. These findings highlight the current lim-
itations of pre-trained VLLMs in accurately detecting and
localizing vehicles in aerial imagery.

D. More Implementation Details

D.1. Decision circle and Pseudo-bounding box label
In this section, we provide a detailed explanation for defin-
ing the pseudo-bounding box size to be 42.36 px. As illus-
trated in Figure 14 (b), any point p within the region en-
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Figure 13. Failure cases of Open-set detectors. (a) Detection results of Grounding-DINO. (b) Detection results of Omdet-Turbo. (c)
Detection results of OWLV2. (d) Detection results of Owlvit. The blue bounding boxes with dotted lines denote the predicted pseudo
bounding box labels while the dots denote the predicted car centers.
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Figure 14. Illustration of how we obtain the 42.36 px bounding box size. (a) The black bounding boxes denote the ground truth pseudo
bounding box labels while the red bounding boxes denote the predicted pseudo bounding box labels. The dots denote the corresponding
centers. ∆x and ∆y denote the x-and y-coordinate difference between the ground truth center and the predicted center. (b) Isocontour of
Intersection of Union (IoU). The yellow arc is 1

4
of the decision circle with a 12 px radius while the black curve represents the isocontour

where IoU = 0.5. (c) An example of a decision circle with a radius of 12 px centered at the car’s center with the corresponding 42.36 px
pseudo-bounding box.

closed by the isocontour of IoU = α represents a predicted
pseudo-bounding box centered at p with an IoU ≥ α rela-
tive to the ground truth pseudo-bounding box. Ideally, all
true positive predicted centers should be contained within
the decision circle. However, no isocontour perfectly fits
the arc of the decision circle. To minimize this discrep-

ancy, we determine the square pseudo-bounding box size a
such that the area enclosed by the isocontour at IoU = 0.5
matches 1

4 of the decision circle. Let ∆x and ∆y denote the
x- and y-coordinate differences, respectively, between the
centers of the ground truth and predicted pseudo-bounding
boxes, as shown in Figure 14 (a). Without loss of gener-



(a) Stable Diffusion (b) ControlNet + Domain Gap Embedding (c) GLIGEN

Figure 15. Failure cases of diffusion models. (a) Images generated by pre-trained Stable Diffusion V1.4. (b) Images generated by pre-
trained Stable UnCLIP [42] with canny edge maps, semantic segmentation maps, and average CLIP image embedding difference between
the LINZ and the UGRC dataset as conditions. From left to right: Real images from LINZ dataset, edge maps, semantic segmentation
maps, and synthetic images. (c) Images generated by GLIGEN. Left: Real images from the LINZ dataset. Right: Synthetic UGRC images.
The bounding boxes that have the same color in left and right images correspond to the same location.

Backbone Task Stage 1 Stage 2 Stage 3
bs lr bs lr bs lr

Faster-RCNN LINZ → UGRC 1024 0.2 192 0.02 512 0.2
Faster-RCNN DOTA → UGRC 1024 0.2 192 0.001 1024 0.2

YOLOv5 LINZ → UGRC 1600 0.001 192 0.0001 2400 0.001
YOLOv5 DOTA → UGRC 2400 0.001 192 0.0001 2400 0.001
YOLOv8 LINZ → UGRC 4096 0.001 192 0.0001 1024 0.001
YOLOv8 DOTA → UGRC 4096 0.001 192 0.0001 2048 0.001
ViTDet LINZ → UGRC 192 0.001 96 0.0001 192 0.001
ViTDet DOTA → UGRC 192 0.0001 96 0.001 192 0.0001

Table 4. Training parameters of each stage, where “bs” denotes the
batch size and “lr” denotes the base learning rate, which will be
scaled during training based on batch size following the MMDe-
tection framework.

ality, we assume the predicted pseudo-bounding box center
lies in the first quadrant. The IoU can then represented as
IoU = (a−∆x)(a−∆y)

2a2−(a−∆x)(a−∆y) . By setting IoU = 0.5, we solve
for ∆y in terms of ∆x, treating a as a constant, which can
be represented as ∆y = a(a−3∆x)

3(a−∆x) . We then integrate ∆y

with respect to ∆x to compute the area under the isocontour
of IoU = 0.5, which is a function of a. Finally we equate
this integral to 1

4 of the area of the decision circle and solve
for a.

D.2. Multi-Stage Training

In this section, we provide more details regarding the train-
ing process of the detectors. As outlined in Sec. 3.3,
the labeling of synthetic target domain (UGRC) images is
conducted in three stages. In the first stage, we train a
detector FS on fully annotated real source domain data
(LINZ or DOTA) and subsequently generate pseudo labels
for the synthetic source domain images. In the second
stage, we train another detector FA on the multi-channel
cross-attention maps of synthetic source domain images
and use it to predict pseudo labels for the multi-channel
cross-attention maps of synthetic target domain images. Fi-
nally, in the third stage, we train a detector FT on the syn-
thetic target domain images. For Faster-RCNN [44], we use
ResNet50 [10] as backbone. For YOLOv5 [14], we utilize
the YOLOv5-M variant, while for YOLOv8 [43], we em-
ploy the YOLOv8-M variant. For ViTDet [24], we disable
the mask head. In all training stages, we scale the image
resolution to 128 px × 128 px, as YOLOv5 requires input
dimensions to be multiples of 32. The specific training pa-
rameters for each stage are provided in Table 4. Except
for these adjustments, we adhere to the MMDetection [2]
framework for implementation.



Backbone Ac +Afg Ac +Abg Ac +Afg +Abg

YOLOv5 [14] 63.7 65.5 68.8
YOLOv8 [43] 69.1 73.1 75.4

Table 5. Comparison of different cross-attention map configura-
tions for adaptation from LINZ to UGRC.

E. More Ablation Studies
In this section, we present two additional ablation stud-
ies to further validate the effectiveness of our proposed
pipeline. First, we investigate the impact of stacking differ-
ent combinations of cross-attention maps. Specifically, we
compare our approach with alternative configurations that
stack two channels of the object category cross-attention
map Ac and one channel from either the learned foreground
cross-attention map Afg or background cross-attention map
Abg, ensuring compatibility with object detectors that ac-
cept only three-channel inputs. As shown in Table 5, inte-
grating both background and foreground information, as in
our method, yields the best performance in AP50.

Second, we analyze the effectiveness of our two-stage
design, which first fine-tunes Stable Diffusion [45] on both
source and target domain datasets, and then introduces
learnable tokens to extract cross-attention maps that cap-
ture both foreground and background information. We com-
pare this design with a one-stage baseline that jointly fine-
tunes Stable Diffusion and learns tokens simultaneously.
The two-stage setup is motivated by the limited localization
ability of unseen prompts in pre-trained Stable Diffusion
models when applied to aerial view images. For instance,
prompts such as “an aerial view image with cars in Utah”
often fail to localize vehicles, leading to inaccurate atten-
tion and suboptimal token learning. By first fine-tuning the
model to better align the concept of “cars” with actual vehi-
cle locations, we enable subsequent token learning to more
precisely focus on relevant regions. Experimental results
show that the one-stage pipeline yields an 8.5% lower AP50

on YOLOv5 [14] when adapting from LINZ to UGRC.


