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In this supplementary material, we first report more ex-
periment results in Section A. Afterwards, the details of the
compared methods during experiment are provided in Sec-
tion B. Moreover, the potential social impacts of our method
are discussed in Section C. Finally, in Section D we discuss
the method limitation and future work.

A. More Experiment Results

A.1. Expert Combinations

In Section 4.4 of the main text, we preliminarily discuss the
expert selection problem about the number and type of ex-
perts. The law of “2-Experts, GAN+DM?” is observed. To
ensure comparison fairness, we directly adopt the widely
used ProGAN and SDv1.4 experts during implementation.
Table 1 further discusses the performance of diverse expert
combinations with the mean Acc score. We find the com-
binations of “ProGAN + SDv1.4/SDv1.5” get satisfactory
results. Moreover, other combinations also maintain a rela-
tively stable detection performance.

A.2. Analysis with Different Architectures

In Table 2, we discuss the influence of different CLIP back-
bone architectures. We replace the default ViT-L/14 archi-
tecture with the ViT-B/16 architecture. Compared to di-
rectly training a universal detector, the utilization of our
MOoE paradigm also achieves consistent improvements with
a smaller backbone, which proves the flexibility of our
method.

A.3. Influence on Each Expert after Finetuning

In Forensic-MoE, after the expert training step, we propose
to enhance the expert interaction through the MoE Finetun-
ing step and expert knowledge distillation. Each expert is
encouraged to learn from others for two purposes, i.e., (1)
self-improvement of every expert and (2) enhancing the ex-
pert collaboration. In Table 3 of the main text, we have
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Table 1. Influence of Expert Combinations

SDv1.4 Midjourney  SDvl.5 Wukong
ProGAN 95.14 94.62 95.21 94.42

ProGAN StyleGAN StyleGAN2 CycleGAN
SDvl4  95.14 94.32 93.19 92.92

Table 2. Analysis with different architecture.

Arch w/ MoE | Aceyr APy
, X 9378 98.89
VI | 9514 9932
. X 90.82 9793
VIT-B/16 v 9223 9825

already discussed the benefit of our design in expert inter-
action and collaboration. In this section, we further discuss
the influence on each expert’s self-improvement.

Figure | compares each expert’s performance before and
after finetuning. Specifically, to evaluate the expert after
finetuning, we freeze it and train an additional FC layer
classifier with the corresponding images. It can be observed
that, whether for the ProGAN or SDv1.4 experts, they both
basically maintain the original discriminative within their
own categories (GAN-family or diffusion-family), and they
also uniformly achieve performance improvement in the
other category after finetuning. It proves that the MoE fine-
tuning step brings remarkable improvement for every indi-
vidual expert.

A.4. Resource Overhead

Table 3 reports our resource overhead with ViT-L/14 and
ViT-B/16 backbones. Different from the compared Fat-
Former, we only use the single image encoder rather than
the whole CLIP model for synthetic detection. Moreover,
benefiting from the flexible adapter-based structure, multi-
ple experts will not introduce significant resource overhead,
and it is suitable for real-world implementation.
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Figure 1. Comparison of expert performance before and after
finetuning.

Table 3. Resource Overhead

Params FLOPs Inference Aceas

M) (G) Time(s)
FatFormer 492.59 109.57 0.2944 | 82.93
Ours(ViT-B/16) 212.38 47.32 0.0532 | 92.23
Ours(ViT-L/14) 520.50 190.36 0.1156 | 95.14

A.5. AP Score Comparison Result

In Table 4, we report the corresponding AP result of the
experiment in the main text Section 4.2. Similar to the
Acc score, it can be observed that our Forensic-MoE also
achieves the best mean AP score across all the test sets.

B. Compared Methods

In Section 4.2 of the main text, we conduct generalization
comparison with existing state-of-the-art methods, includ-
ing CNNSpot [8], GramNet [3], LGrad [6], UnivFD [4],
DIRE [9], FatFormer [2], and NPR [7]. Following, we pro-
vide the detailed introduction of each compared method.

It is worth noting that, some of the above methods use
the UnivFD dataset [4] for Diffusion-family detection per-
formance evaluation in their original papers. However, even
with the same generative model, the Genlmage dataset[10]
is more challenging due to its broader subject coverage and
larger data volume. Therefore, we select the Genlmage
dataset for evaluation in the main text.

* CNNSpot [8] proposes to detect synthetic images
through deep learning models, and discusses the impact
of image processing methods on detection results.

e GramNet [3] suggests focusing on the global texture of
the image for effective detection.

* LGrad [6] finds that the gradient information in genera-
tive models like StyleGAN [1] reveals the forensic infor-
mation and can be utilized for detection.

e UnivFD [4] finds that benefit from the abundant prior
knowledge of real image distribution, several large-scale
pretrained models like CLIP [5] exhibit significant po-
tential in synthetic detection. It only utilizes the simple

nearest neighbor classification and achieves remarkable
performance.

* DIRE [9] proposes that diffusion models generally can
reconstruct better synthetic images than real images. Ac-
cordingly, the reconstruction error is utilized to distin-
guish the synthetic images.

» FatFormer [2] designs a forgery-aware adapter and text-
guided contrastive learning schema to aggregate forensic
traces, thus further improving the CLIP-based synthetic
detection performance.

* NPR [7] suggests focusing on the up-sampling generation
artifact and designing a neighboring pixel relationships
feature for generalizable synthetic detection.

C. Potential Social Impacts

Although developing synthetic image detection tools is ben-
eficial for preventing the spread of misinformation and
guaranteeing visual content trustworthiness. However, it
may still lead to misjudgments and hinder the dissemina-
tion of normal content. Firstly, a detection system deployed
on the website server may mistakenly identify and intercept
the authentic content, resulting in unnecessary information
spread costs. Moreover, the detection results could be uti-
lized as evidence in legal proceedings, and the misclassified
cases may mislead the legal judgment. Before developing
the detection tools for content moderation and evidence col-
lection, these potential social impacts should be thoroughly
considered.

D. Limitations and Future Works

Our mixture of experts architecture exhibits remarkable de-
tection performance on diverse synthetic methods. In real-
world deployment, the addition of every new expert requires
the whole model to be finetuned again, which can be im-
proved to enhance flexibility. The investigation of this prob-
lem is left in future work. We hope to simplify the finetun-
ing process and enhance the real-world deployment flexibil-
ity through the incremental learning paradigm.
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