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Supplementary Material

1. Additional Implementation Details

1.1. Construction of Primitive-Mesh
KNN-based. We begin by densely sampling point clouds
from the mesh and then apply farthest point sampling (FPS)
and KNN to identify central points and point clusters. For
mesh-derived dense point clouds, FPS begins with a random
point and iteratively chooses the farthest point to yield N
center points. These N points serve as centroids for KNN
clustering. The face category is determined through a vot-
ing process based on the categories of these sampled points.
The number of categories is set as the integer value of the to-
tal number of faces divided by 200, with a maximum limit
of 10. This strategy is highly efficient, requiring only 0.2
seconds to segment a 3D mesh, enabling the rapid gener-
ation of large-scale results. As shown in Fig. 1, the con-
structed Primitive-Mesh maintains well-preserved local 3D
structural information, while each cluster patch contains a
limited number of faces. This ensures compliance with the
token length constraints of large language models, effec-
tively expanding the scale of trainable data.

Semantic-based. We further employ the zero-shot 3D
part segmentation method, SamPart3D [7], to construct
the Semantic-based Primitive-Mesh dataset. SamPart3D
is pretrained on Objaverse [2] with a 3D backbone net-
work designed to extract visual features. It then utilizes
lightweight MLPs to refine 2D segmentation masks into
scale-conditioned groups for point cloud clustering (we set
the scaling factor to 1.2), enabling effective 3D data seg-
mentation. We perform SamPart3D on more than 25k high-
quality meshes that have undergone aesthetic evaluation [5].
To obtain semantic labels for each part, we render multi-
view images and annotate the corresponding 2D regions for
each segmented 3D component. We then query GPT-4o
using these images for semantic labels. This strategy pro-
vides more accurate semantic information for mesh parts
but is time-consuming and incurs API query costs. We uti-
lize 128 A800 GPUs and spent over three days constructing
this dataset. Fig. 1 presents examples of Semantic-based
Primitive-Mesh, demonstrating that the resulting parts con-
tain meaningful local semantic structures. By integrating
these segments with their corresponding textual labels, our
proposed MeshLLM significantly enhances performance.

1.2. Metric Details
The evaluation of the generation of 3D mesh can be chal-
lenging due to the lack of direct correspondence with

ground truth data. Given a set of generated meshes Sg and
a set of reference meshes Sr, we follow prior works [1, 3,
4, 6] and define the following metrics:

MMD(Sg , Sr) =
1

|Sr|
∑

Y ∈Sr

min
X∈Sg

D(X,Y ),

COV(Sg , Sr) =
|{argminY ∈Sr

D(X,Y )|X ∈ Sg}|
|Sr|

,

1-NNA(Sg , Sr) =

∑
X∈Sg

1[NX ∈ Sg ] +
∑

Y ∈Sr
1[NY ∈ Sr]

|Sg |+ |Sr|
,

where D(X,Y ) is a Chamfer Distance (CD) distance be-
tween two meshes X and Y . 1[NX ∈ Sg] is a indicator
function that returns 1 if NX belongs to Sg , otherwise 0
and 1[NY ∈ Sr] is a ndicator function that returns 1 if NY

belongs to Sr, otherwise 0. And NX in the 1-NNA metric
is a point cloud that is closest to X in both the generated
and reference dataset, i.e.,

NX = argmin
K∈Sr∪Sg

D(X,K)

To evaluate point-based measures, we sample 2048 points
randomly from all baseline results.

MMD measures the closeness between generated and
real meshes by computing the minimum distance from each
reference mesh to the generated set. Lower MMD values
indicate better shape generation quality as the generated
meshes are closer to the real ones. COV measures how well
the generated meshes cover the reference set. Higher COV
values indicate better diversity in the generated meshes, as
more real meshes are matched. 1-NNA evaluates whether
the generated and real meshes are evenly distributed. If 1-
NNA is close to 50%, the generated meshes are well-mixed
with real meshes, indicating good quality.

2. Additional Results
2.1. Shape Novelty Analysis
We compute the Chamfer Distance between samples to
identify the three most similar training meshes to the gen-
erated meshes for comparison. As shown in Fig. 2, while
the overall structure of the generated meshes may resem-
ble examples from the training set, the local details exhibit
significant differences. This demonstrates that our model
possesses generalization ability and creativity rather than
merely replicating training samples.
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Figure 1. Examples of the constructed Primitive-Mesh. (a) The KNN-based method is simple and efficient, enabling the rapid con-
struction of large-scale trainable mesh parts while preserving meaningful spatial structures. (b) The Semantic-based method generates
mesh parts at the semantic level and includes corresponding textual annotations, which better aid LLMs in accurately understanding and
generating meshes.

2.2. Training Strategy Analysis

In MeshLLM, we introduce a progressive training strat-
egy that begins with KNN-based Primitive-Mesh samples,
followed by Semantic-based Primitive-Mesh samples, and
concludes with training on specific mesh generation and
understanding tasks. We further investigate the impact of

training order for Primitive-Mesh data. Specifically, we first
train MeshLLM on Semantic-based Primitive-Mesh sam-
ples and then on KNN-based Primitive-Mesh samples. As
shown in Table 1, training on semantic Primitive-Mesh sam-
ples later yields better results.

Generally, KNN-based Primitive-Mesh rely primarily on
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Figure 2. Shape novelty. We compute the Chamfer Distance be-
tween the generated meshes and those in the training set, selecting
the three closest matches. The notable differences observed among
them indicate that MeshLLM exhibits creativity.

Table 1. Effect of the training order. MeshLLMR refers to the
reversed training order, where the Semantic-based Primitive-Mesh
is trained first, followed by the KNN-based Primitive-Mesh. Pre-
training on large-scale data first, followed by fine-tuning on high-
quality data, leads to improved model performance.

COV↑ MMD↓ 1-NNA FID↓ KID↓
MeshLLMR 45.48 5.64 63.36 45.77 3.31
MeshLLM 47.33 5.72 60.82 42.39 2.25

BLEU-1↑ CIDEr↑ Meteor↑ ROUGE↑ CLIP↑
MeshLLMR 0.734 1.303 0.435 0.638 0.372
MeshLLM 0.763 1.753 0.445 0.702 0.391

geometric information for local segmentation. This large-
scale preliminary training helps the model learn general ge-
ometric features of meshes. Subsequently, finetuning on the
more semantically informative Primitive-Mesh samples al-
lows the LLM to refine its understanding and capture de-
tailed semantic distinctions. Conversely, reversing the train-
ing order introduces challenges. First, it increases the ini-
tial learning difficulty, as the LLM needs to grasp both
mesh topology and local semantics simultaneously. Second,
when later exposed to 15 times more KNN-based samples,
the model may struggle to retain the semantic knowledge
learned earlier, which is crucial for downstream mesh gen-
eration and understanding, ultimately harming overall per-
formance. These findings suggest that following the typical
LLM training paradigm leads to better results for 3D mesh
learning, starting with large-scale, diverse data before in-

tegrating specialized, high-quality samples. This approach
fosters the development of a robust and adaptable model.

1

Text prompt: 
Create a 3D model following the description: 
A chair featuring a rectangular seat and 
sturdy square legs. It has a high, slightly 
arched backrest and open armrests, with a 
soft cushion on the seat for added comfort. 

Figure 3. Failure case. The limited semantic dataset size reduces
text-geometry alignment for more fine-grained generations.

2.3. Failure Case Analysis
We show a failure case in Fig. 3. Compared to existing lan-
guage task corpora, mesh datasets remain relatively scarce,
resulting in imprecise alignment between textual descrip-
tions and geometric structures, which limits the capability
for fine-grained mesh generation. Future work could ex-
plore incorporating other modalities (e.g., images) to en-
code more information and embed it into LLMs, thereby
improving performance in detailed mesh generation.
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