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(a) insufficient scene reconstruction

(b) incomplete scene reconstruction

Customized init points with missing regions

Figure 1. Impact of NeRF-assisted Gaussian growth. We initialize 3DGS using point clouds with missing regions to evaluate its scene
perception range and sensitivity to initialization. Without NeRF-assisted Gaussian growth, 3DGS exhibits insufficient reconstruction (a)
or incomplete reconstruction (b) in the missing areas. However, when employing the proposed NeRF-assisted Gaussian growth strategy
in our method, these missing regions are successfully reconstructed. This demonstrates that NeRF significantly enhances the perception
range of 3DGS, reducing its sensitivity to initialization and improving visual quality.

1. Analysis of Gaussian Adaptive Control from
NeRF Branch

The continuous spatial representation of NeRF enables
queries at any spatial location, allowing it to perceive the

entire 3D scene. In contrast, individual Gaussian sphere in
3DGS has a limited perceptual range, making 3DGS sen-
sitive to initialization and less effective in adaptive control.
As shown in Figure 1, we deliberately design a Gaussian
initialization with missing regions in certain spatial areas.
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Figure 2. Comparison of initialization with RadSplat. NeRF-GS focuses more on the contours of the scene during ray sampling,
alleviating the burden of position optimization in the GS branch while achieving superior visual results in regions with complex textures.
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Figure 3. Impact of joint optimization on the NeRF branch. The dashed line indicates the mean PSNR. Given equivalent training iter-
ations, the NeRF obtained through NeRF-GS outperforms training this NeRF independently. This demonstrates that dual-branch training
not only benefits the GS branch but also enhances the performance of the NeRF branch.

After iterative optimization, it can be observed that GS al-
locates a limited number of Gaussians to these regions with-
out assistance from the NeRF branch, and in extreme cases,
it fails to perceive the missing areas entirely, resulting in
poor or incomplete scene reconstruction. Conversely, our
NeRF-assisted adaptive control strategy successfully senses
these regions, significantly enhancing the global perceptual
capability of the GS branch and reducing its sensitivity to
initialization.

2. Analysis of Edge-based Initialization
NeRF-GS utilizes pre-trained NeRF to obtain candidate
Gaussian positions. To enhance initialization efficiency, we
incorporate an edge detection step that pre-identifies critical

rays and increases their sampling probability during initial-
ization. This design is predicated on the observation that
Gaussian spatial distribution should ideally align with the
contours of the actual 3D scene, with more Gaussians in
textured areas and fewer in blank areas. In the baseline
RadSplat, rays are sampled uniformly at random without
discrimination, which we consider inefficient. To illustrate
this, we conduct a visualization experiment in Figure 2,
showing that our approach yields a Gaussian distribution
that clusters around areas rich in texture, with fewer Gaus-
sians in low-texture or empty regions. The rendering re-
sults demonstrate that our edge-based initialization method
effectively captures complex scene textures, outperforming
uniform sampling in accurately representing the scene.



Table 1. Additional comparisons. We evaluate the perfor-
mance of the NeRF branch in NeRF-GS and compare it to Instant-
NGP [2], which also utilizes a hash-based structure.

Method
DeepBlending Tanks&Temples Mip-NeRF360

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Instant-NGP 23.62 0.797 0.423 21.72 0.723 0.330 26.43 0.725 0.339
BranchNeRF 22.43 0.784 0.441 21.11 0.718 0.338 25.12 0.722 0.343
BranchGS 30.70 0.910 0.245 24.44 0.860 0.172 28.32 0.824 0.217

Table 2. Additional ablation studies. Numbers are PSNR metric.
Drandom

3dgs and Dedge
3dgs denote direct optimizing 3DGS after initializa-

tion using the random initialization and the proposed edge-based
initialization, respectively.

Tanks&Temples DeepBlending

Truck Train Avg Drjohnson Playroom Avg

w/o Lvol
gs 26.10 22.48 24.29 30.02 31.07 30.55

w/o Lnerf 25.44 21.15 23.30 28.79 29.46 29.13

Drandom
3dgs 25.46 21.83 23.65 29.07 29.92 29.50

Dedge
3dgs 25.87 22.11 23.99 29.40 30.38 29.89

Full 26.27 22.61 24.44 30.17 31.23 30.70

3. Analysis of NeRF Branch Performance
Mutual Promotion between NeRF and GS Branches.
While the primary aim of this work is to leverage NeRF
characteristics to address 3DGS limitations, we have found
that the GS branch also positively impacts the NeRF branch
during joint training. As depicted in Figure 3, the NeRF
branch trained jointly with the GS branch outperforms an
independently optimized NeRF under the same number of
iterations. This improvement arises from feature sharing
and joint loss constraints between NeRF and GS branches,
which enhance NeRF optimization as well. The simultane-
ous performance gains of both branches further confirm the
complementary relationship between NeRF and 3DGS, of-
fering insights for exploring integration with other forms of
3D representation.
Compare with Structurally Similar NeRF Method. We
further compare the NeRF branch to the GS branch and the
Instant-NGP [2] based on the same hash structure. It should
be noted that this article focuses more on the improvement
of the GS branch performance by NeRF, where we observe
a significant performance improvement in the GS branch.

4. Additional Ablation Studies
We further conduct ablation studies on additional loss
terms, including the introduced volume regularization [1]
and the overall loss term of the NeRF branch, Lnerf. Addi-
tionally, we evaluate the performance of directly optimiz-
ing 3DGS after initialization using the random initialization
(Drandom

3dgs ) and the proposed edge-based initialization (Dedge
3dgs).

The results, presented in Table 2, indicate a significant per-
formance drop when Lnerf is removed, demonstrating that

jointly optimizing the NeRF branch benefits the GS branch.
Similarly, direct optimization of GS after initialization leads
to performance degradation, validating the effectiveness of
our proposed joint optimization strategy. Moreover, we ob-
serve that Drandom

3dgs underperforms compared to Dedge
3dgs, further

confirming the superiority of our initialization strategy.

5. Per-scene Breakdown Results of NeRF-GS
We provide a detailed quantitative assessment of NeRF-GS
across various scenes in Tables 3, 4 and 5, including metrics
such as PSNR, SSIM, and LPIPS.

Table 3. Per-scene results of Blender dataset of our method.

Full views

chair drums ficus hotdog lego materials mic ship Avg

PSNR 35.36 26.34 35.15 37.81 36.45 30.873 36.78 30.9 33.71
SSIM 0.985 0.948 0.9852 0.984 0.983 0.962 0.988 0.887 0.970
LPIPS 0.012 0.047 0.013 0.019 0.014 0.036 0.0075 0.111 0.032

12 views

chair drums ficus hotdog lego materials mic ship Avg

PSNR 28.32 22.67 26.48 29.58 26.18 24.26 29.02 24.21 26.34
SSIM 0.950 0.8991 0.9371 0.942 0.912 0.888 0.966 0.799 0.912
LPIPS 0.040 0.082 0.035 0.063 0.081 0.106 0.027 0.203 0.080

8 views

chair drums ficus hotdog lego materials mic ship Avg

PSNR 25.95 20.58 23.12 27.27 25.01 20.83 25.72 22.93 23.92
SSIM 0.917 0.871 0.892 0.937 0.885 0.834 0.941 0.773 0.881
LPIPS 0.061 0.114 0.101 0.099 0.101 0.184 0.112 0.225 0.124

Table 4. Per-scene results of Tanks&Temples and DeepBlend-
ing datasets of our method.

Tanks&Temples DeepBlending

Truck Train Avg Dr Johnson Playroom Avg

PSNR 26.27 22.61 24.44 30.17 31.23 30.70
SSIM 0.887 0.833 0.860 0.91 0.914 0.912
LPIPS 0.127 0.195 0.161 0.235 0.238 0.237

Table 5. Per-scene results of Mip-NeRF360 dataset of our
method.

bicycle bonsai counter graden kitchen room stump flowers treehill Avg

PSNR 25.52 33.97 30.5 27.84 32.56 32.78 27.08 21.71 22.99 28.32
SSIM 0.695 0.957 0.93 0.868 0.939 0.941 0.785 0.613 0.626 0.817
LPIPS 0.327 0.145 0.144 0.102 0.102 0.155 0.206 0.314 0.395 0.210
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