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A. Pseudocode of the Proposed Algorithm
We present the pseudocode of our proposed attack algo-
rithm for image modality in Alg. 1. Note that the text at-
tacks are completely symmetrical as illustrated in Sec. 3.

Algorithm 1 Pseudocode of universal image attacks

Require: Gw(·): the perturbation generator; Ds: the mul-
timodal training set; fI , fT : image encoder and text en-
coder of the surrogate VLP model; K: the max itera-
tion; ϵv: the perturbation budget; N : the scaling times;

Ensure: Universal image perturbation δv;
1: Initialize the fixed noise zv with Gaussian distribution;
2: for i← 0 to K do
3: Randomly sample an image-text pair (v, t) ∼ Ds;
4: δv = Clipϵv (Gw(zv; fT (t))), vadv = v + δv;
5: Augment v and vadv into different scales and apply

random Gaussian noises to obtain v = {v1 . . . , vN}
and vadv = {vadv1 . . . , vadvN };

6: Randomly sample a batch of text sets from Ds and
obtain tpos = {t′1 . . . , t′K} by selecting the one with
the farthest feature distance from the clean image v;

7: Compute LCL with vadv , t and tpos by Eq. (3);
8: Compute LDis with v and vadv by Eq. (4);
9: Optimize the generator Gw based on Eq. (5);

10: Backward pass and update Gw;
11: end for
12: Return δv

B. More Training Details
For Flickr30K and MSCOCO, we randomly sample 30,000
images and their captions from the training set to train
our perturbation generator. For SNLI-VE and RefCOCO+,
we learn the C-PGC directly using their training sets with
29,783 and 16,992 images, respectively. Since an image
corresponds to multiple text descriptions in these datasets,
we calculate the average of their textual embedding as the
multimodal condition for the cross-attention modules.

We initialize the noise variable zv as a 3 × 3 matrix.
Meanwhile, the initial noise zt’s dimensions in the text
modality depend on the size of the hidden layer within the
specific VLP model. Concretely, we set its dimension to
1 × 3 for ALBEF, TCL, BLIP, and X-VLM, while 1 × 2
for the CLIP model. When computing the multimodal con-
trastive loss LCL, the temperature τ is set as 0.1. The gen-
erator is trained over 40 epochs with the Adam optimizer

at a learning rate of 2−4. Following previous works [5, 8],
we employ the attack success rate (ASR) as our quantita-
tive measurement in ITR tasks by computing the extent to
which the adversarial perturbations result in victim models’
performance deviations from the clean performance.

C. More Experimental Results
In this section, we provide more experimental results of our
method in various tasks and scenarios.

Visual entailment tasks. Given an image and a textual
description, visual entailment involves determining whether
the textual description can be inferred from the semantic in-
formation of the image. We align with previous VLP attacks
[8, 10] and conduct experiments on the SNLI-VE [9] dataset
using the ALBEF and TCL models. Note that the Baseline
represents the clean performance of the target model on the
clean data and the orange and green indicate ALBEF and
TCL as source models respectively. The results presented
in Fig. 1 reveal that C-PGC obtains impressive attack ef-
fects by decreasing the average accuracy by nearly 20%.

ALBEF TCL
Target model

40

50

60

70

80

A
cc

(%
)

Baseline ALBEF TCL

Fig. 1: Accuracy of VE tasks for different source and target mod-
els. The Baseline indicates the clean performance.

Notably, [2] has reported a large number of annotation
errors in the labels of the SNLI-VE corpus used for VE
tasks. Therefore, the presented results are only for exper-
imental integrity and reference purposes.

Image-text retrievals on MSCOCO dataset. We then
supplement the ASR of the ITR tasks on the MSCOCO
dataset in Table 1. The results again reveal that C-PGC
greatly enhances the attack. Particularly in the more real-
istic and challenging transferable scenarios, the proposed
method achieves considerably better performance, e.g.,
82.49% and 76.24% increase in ASR of TR and IR tasks



Table 1. ASR (%) of different methods for image-text retrieval tasks on MSCOCO dataset. TR indicates text retrieval based on the input
image, while IR is image retrieval using the input text.

Source Method ALBEF TCL X-VLM CLIPViT CLIPCNN BLIP

TR IR TR IR TR IR TR IR TR IR TR IR

ALBEF
GAP 82.65 84.35 53.6 45.46 15.09 15.64 25.18 29.94 28.06 35.28 37.44 33.61
ETU 83.6 88.98 27.43 24.47 20.39 19.94 28.54 35.05 37.01 44.72 22.25 22.03
Ours 96.18 95.09 82.49 76.24 39.97 48.58 59.71 67.05 61.27 70.8 59.18 63.89

TCL
GAP 55.92 48.22 95.16 92.29 17.34 17.01 28.73 31.19 32.27 39.81 43.59 39.64
ETU 60.09 50.62 93.28 89.28 27.19 25.41 33 37.86 45.83 52.24 39.59 36.31
Ours 76.62 71.17 96.72 93.88 42.99 48.4 70.32 79.08 74.1 82.97 62.35 66.97

X-VLM
GAP 26.35 23.72 27.8 22.91 95.1 88.84 32.39 38.16 52 55.4 24.67 22.65
ETU 22.94 21.63 22.01 19.65 96.23 92.97 28.81 34.26 48.53 52.74 20.52 19.3
Ours 51.46 65.71 52.8 64.99 98.89 95.79 67.42 75.45 75.49 82.58 55.74 66.7

CLIPViT

GAP 35.96 31.91 37.33 32.56 33.42 29.25 97.71 96.04 74.63 74.67 33.47 31.99
ETU 31.5 29.62 33.25 30.38 32.36 29.92 95.88 96.34 82.07 83.41 30.62 30.7
Ours 46.92 53.89 46.03 50.87 41.49 48.6 98.74 98.01 81.58 86.5 47.35 57.55

CLIPCNN

GAP 13.57 25.21 19.05 28.87 11.59 23.13 27.46 43.16 73.18 81.6 15.25 27.94
ETU 21.71 21.92 22.33 22.8 24.77 23.93 34.99 40.3 95.34 95.14 20.06 22.26
Ours 33.41 47.96 38.81 50.78 36.59 48.83 66.04 72.59 94.73 95.21 42.39 57.84

BLIP
GAP 12.23 23.94 14.49 25.44 6.91 17.81 20.32 37.00 26.81 43.59 47.21 73.33
ETU 46.07 43.27 44.58 37.61 33.14 29.85 33.77 40.02 48.28 52.88 81.27 83.59
Ours 61.95 60.92 60.95 59.57 51.81 52.53 62.23 72.51 69.61 78.44 91.67 90.42

Table 2. ASR (%) of Cross-domain attacks on six models from Flickr30k to MSCOCO and vice versa.

Setting Source ALBEF TCL X-VLM CLIPViT CLIPCNN BLIP

TR IR TR IR TR IR TR IR TR IR TR IR

Flickr30K
↓

MSCOCO

ALBEF 96.83 94.69 81.46 74.87 44.79 51.64 63.68 73.06 69.77 78.09 68.88 70.61
TCL 78.27 73.17 97.83 95.03 40.46 47.34 64.98 73.27 70.96 78.18 63.71 67.1

X-VLM 50.63 65.91 53.23 65.65 95.91 93.32 65.51 74.72 75.69 81.93 57.69 67.28
CLIPViT 49.88 53.39 49.47 52.21 47.77 48.52 95.5 97.01 83.05 85.38 50.97 57.93
CLIPCNN 43.05 54.19 43.04 54.39 43.73 53.94 67.3 74.39 98.61 97.41 47.22 59.11

BLIP 54.45 55.51 55.63 53.02 41.07 46.93 61.69 69.24 65.52 75.23 83.19 82.17

MSCOCO
↓

Flickr30K

ALBEF 88.08 87.28 58.9 61.53 17.58 36.07 39.78 61.08 47.28 64.95 35.02 49.4
TCL 47.58 53.7 87.27 83.55 18.6 34.45 51.85 72.22 59.46 76.09 37.75 53.08

X-VLM 25.39 46.74 27.33 49.13 79.98 81.72 42.73 66.48 59.46 73.07 31.65 51.48
CLIPViT 21.07 39.47 24.53 42.44 15.45 36.52 93.97 95.53 62.95 77.21 25.55 45.91
CLIPCNN 13.87 37.93 19.36 41.25 15.85 37.47 42.61 66.73 85.75 88.76 22.92 48.45

BLIP 33.2 46.07 36.02 47.97 23.58 38.48 43.97 65.3 56.35 71.08 71.91 73.62

when transferring from ALBEF to TCL, confirming the su-
periority of our contrastive learning-based paradigm.

Cross-domain scenarios. We proceed to discuss the at-
tack performance of the proposed algorithm in a more chal-
lenging scenario where there is an obvious distribution shift
between the training dataset and the test samples. Specifi-
cally, we generate universal adversarial perturbations based
on MSCOCO or Flickr30K and evaluate them accordingly
on the other dataset. We present the attack success rates on
the retrieval tasks across six models in Table 2. It can be

observed that the domain gap indeed has a negative effect
on attack performance. However, our method still main-
tains excellent ASR in most cases, unveiling its outstanding
cross-domain transferability.

Results of R@5 and R@10. As aforementioned, we
supplement the ASR of the ITR tasks based on R@5 and
R@10 metrics and provide the attack success rates in Table
3. Obviously, our proposed C-PGC still consistently attains
better performance than the baseline method ETU, regard-
less of the evaluation measurements for retrieval results.



Table 3. Attack success rates (%) regarding R@5 and R@10 metrics of our C-PGC and ETU for image-text retrieval tasks.

Dataset Source Method ALBEF TCL X-VLM CLIPViT CLIPCNN BLIP

TR IR TR IR TR IR TR IR TR IR TR IR

Flickr30K
(R@5)

ALBEF ETU 68.54 77.68 14.41 14.43 4.1 6.41 6.11 16.97 11.57 23.11 9.36 13.3
Ours 83.67 80.02 41.84 42.18 6.9 17.19 18.34 41.03 26.22 49.42 24.25 34.59

TCL ETU 14.43 16.23 84.88 80.43 2.4 5.8 5.6 17.37 13.27 24.27 7.24 10.98
Ours 29.76 35.62 90.89 84.18 3.2 13.65 20.93 42.06 25.27 49.1 16.5 30.32

X-VLM ETU 3.81 5.85 3.9 6.51 89.2 84.57 5.18 16.9 14.33 24.52 3.12 7.81
Ours 7.62 25.1 8.71 26.63 89.2 85.84 19.38 42.48 30.89 50.7 13.68 29

CLIPViT
ETU 5.31 7.88 7.51 10.42 4.7 8.92 76.42 84.54 35.46 41.73 5.03 10.2
Ours 6.31 17.51 8.01 19.65 4.3 15.1 76.89 85.2 39.6 54.68 9.15 23.23

CLIPCNN
ETU 1.7 5.02 3.4 7.16 1.4 6.02 6.22 17.61 84.39 87.85 2.31 8.26
Ours 4.41 19.8 6.41 25.19 4.8 23.49 18.76 43.82 90.34 88.12 8.95 26.89

BLIP ETU 8.22 10.11 6.71 10.46 3.2 5.62 5.28 16.39 9.24 21.97 45.98 73.75
Ours 14.43 21.67 13.91 21.59 5.4 14.54 18.03 36.26 23.89 44.79 59.26 74.82

MSCOCO
(R@5)

ALBEF ETU 81.73 88.76 13.45 11.51 9.01 9.32 16.85 20.74 22.6 28.86 10.96 12.02
Ours 93.36 91.56 70.76 62.31 19.97 30.46 41.58 51.23 44.14 55.98 41.08 49.22

TCL ETU 44.94 36.45 90.21 84.54 13.46 13.1 19.52 23.03 30.81 36.37 25.63 25.11
Ours 60.62 56.21 94.89 90.33 22.08 30.38 53.14 64.98 58.85 70.77 45.28 53.55

X-VLM ETU 11.03 11.11 10.22 9.24 94.36 90.02 17.56 20.8 33.45 38.14 10.08 10.12
Ours 31.59 48.69 32.1 48.11 96.7 91.66 49.53 60.82 59.83 69.59 37.4 52.5

CLIPViT
ETU 15.89 16.01 18.61 16.11 16.45 16.61 93.12 94.66 72.97 75.5 17.1 19.26
Ours 25.69 35.95 24.69 33.14 21.37 31.38 96.7 96.49 70.76 77.86 28.72 42.01

CLIPCNN
ETU 9.55 10.34 9.9 10.95 10.98 11.96 22.63 26.84 90.7 92.07 9.69 12.25
Ours 16.83 31 19.86 34.54 18.84 34.02 50.21 59.2 90.94 90.43 25.5 44.89

BLIP ETU 29.6 29.6 26.95 21.97 17.67 16.14 20.83 24.27 32.77 36.72 76.16 80.69
Ours 42.56 43.73 41.72 41.8 31.05 35.63 44.37 57.9 54.47 66.01 81.71 81.91

Flickr30K
(R@10)

ALBEF ETU 65.8 74.89 10 9.36 2.8 3.79 2.43 11.04 6.95 15.79 6.62 8.57
Ours 80.5 75.17 34.8 34.28 4.2 11.72 9.83 31.14 16.87 39.40 18.76 27.08

TCL ETU 11.4 11.35 82.2 77.33 1.6 3.38 3.04 10.63 7.06 17.14 4.91 7.34
Ours 24.2 27.32 89.2 80.73 2.1 9.33 12.77 32.4 16.97 38.63 12.54 24.1

X-VLM ETU 1.9 3.48 2.4 3.48 87.1 81.87 3.14 10.91 8.59 16.66 2.01 4.72
Ours 4.1 17.79 4.6 19.27 86.3 82.94 11.14 31.49 21.06 40.3 7.32 21.81

CLIPViT
ETU 3.6 4.75 4.6 6.43 2.7 5.47 68.17 78.93 27.2 32.94 3.11 6.35
Ours 4.2 11.45 4.6 13.08 2.8 10.15 67.98 79.46 29.75 45.56 5.52 17.23

CLIPCNN
ETU 0.6 2.64 1.6 3.86 0.7 3.48 3.65 11.32 80.37 85.18 1.2 5.31
Ours 2.4 14.59 3.5 18.36 2.3 17.95 11.75 34.23 86.4 83.83 5.52 20.86

BLIP ETU 6.5 6.52 4.9 6.57 1.8 3.32 2.63 10.52 5.52 14.57 42.43 71.26
Ours 11.2 15.49 9.1 14.14 2.8 10.19 9.83 27.46 14.83 34.43 53.46 72

MSCOCO
(R@10)

ALBEF ETU 81.14 87.58 9.08 7.92 5.44 6.33 12.62 16.15 17.71 23.05 7.63 9.15
Ours 91.58 89.62 64.5 55.3 13.81 23.34 33.3 43.75 35.82 48.38 33.77 43.11

TCL ETU 38.6 30.39 88.56 82.6 8.92 9.3 14.61 18.43 25.24 30.06 20.37 21.41
Ours 52.59 49.09 93.63 88.53 15.04 23.25 44.22 58.02 50.16 63.95 37.77 47.26

X-VLM ETU 7.41 7.37 6.76 6.27 93.17 88.66 12.93 16.43 28.32 32.47 6.73 8.01
Ours 23.01 40.39 23.15 40.07 94.97 88.95 40.24 53.74 52 62.7 30.43 45.67

CLIPViT
ETU 11.05 11.5 13.67 11.67 11.21 12.14 91.47 93.8 67.7 71.14 13.03 15.4
Ours 17.87 28.52 17.48 26.09 14 24.67 95.55 95.31 64.04 72.75 22.05 35.65

CLIPCNN
ETU 6.05 7.02 6.54 7.54 6.97 8.36 17.65 21.66 88.13 90.16 6.73 9.45
Ours 10.77 24.11 13.34 27.53 12.31 28.03 41.33 52.02 88.28 87.14 20.26 39.43

BLIP ETU 23.63 24.4 19.69 16.37 11.55 11.86 16.3 19.66 26.04 30.64 73.88 77.63
Ours 33.64 36.14 32.15 33.8 22.64 28.52 36.07 50.3 47 59.07 78.39 78.98



Table 4. ASR (%) of ITR tasks under defense strategies. The surrogate model is ALBEF and the dataset is Flick30K. LT denotes the
LanguageTool that corrects adversarial words within the sentence.

Method ALBEF TCL X-VLM CLIPViT CLIPCNN BLIP

TR IR TR IR TR IR TR IR TR IR TR IR

Gaussian 37.92 49.49 32.4 47.04 19.31 37.79 42.49 65.61 50 72.23 29.65 48.77
Medium 53.13 61.6 39.54 51.96 20.43 39.69 46.31 66.92 57.9 74.51 33.75 52.68
Average 29.09 44.91 29.61 44.72 17.89 36.07 42.98 65.42 49.74 72.48 27.55 46.9

JPEG 59.3 63.7 42.34 52.52 21.65 41.58 41.26 65.77 53.5 72.62 37.01 55.04
DiffPure 64.34 74.63 65.22 74.8 66.06 75.19 78.08 86.7 82.25 88.03 70.45 79.09

NRP 32.33 40.63 20.19 39.23 14.63 32.62 48.4 69 59.72 74.09 30.28 52.2
NRP+LT 29.05 35.23 21.33 37.41 15.55 29.63 47.19 67.35 56.82 73.47 28.23 50.59

Table 5. ASR results of the proposed method with different loss functions on Flickr30 when the surrogate model is ALBEF.

Method ALBEF TCL X-VLM CLIPViT CLIPCNN BLIP

TR IR TR IR TR IR TR IR TR IR TR IR

LMSE 12.02 30.75 14.39 35.08 11.41 30.79 37.32 56.05 40.17 56.39 19.66 37.33
LCos 57.55 67.4 37.06 49.45 10.7 28.48 37.49 58.3 40.87 58.39 23.33 39.44
LCL 76.46 82.46 56.52 62.61 14.33 33.61 42.98 62.81 46.11 65.58 27.13 46.44

LMSE+LDis 81.09 83.71 48.76 56.54 17.58 35.72 41.5 64.72 47.41 70.34 35.96 51.76
LCos+LDis 65.20 72.71 36.13 50.06 18.63 36.74 42.23 65.17 50.91 69.78 36.91 50.69
LCL+LDis 90.13 88.82 62.11 64.48 20.53 39.38 43.1 65.93 54.4 72.51 44.79 56.36

Performance under Defenses. We next analyze several
defense strategies to mitigate the potential harm from C-
PGC. Concretely, we totally align with TMM [8] and con-
sider several input preprocessing-based schemes, including
image smoothing [1] (Gaussian, medium, average smooth-
ing), JPEG compression [4], NRP [6], and the DiffPure [7],
a powerful purification defense using diffusion models. For
adversarial text correction, we choose the LanguageTool
(LT) [8], which has been widely adopted in various scenar-
ios due to its universality and effectiveness.

The attack results in Table 4 demonstrate that the pro-
posed attack still attains great ASR against different pow-
erful defenses. It also indicates that NRP+LT would be a
decent choice to alleviate the threat brought by C-PGC. An-
other noteworthy finding is that, although DiffPure [7] ex-
hibits remarkable performance in defending attacks in clas-
sification tasks, its ability is greatly reduced in V+L scenar-
ios since the denoising process could also diminish some
texture or semantic information that is critical for VLP mod-
els, thereby acquiring unsatisfactory defense effects.

D. Rationality behind the Loss Design
It is widely acknowledged that contrastive learning serves
as a powerful and foundational tool for modality alignment
in VLP models, establishing a nearly point-to-point rela-
tionship between image and text features. Since contrastive
learning can establish robust and precise alignment, lever-

aging the same technique to disrupt the established align-
ments is also promising to yield effective performance.

Taking image attack as an example, the underlying prin-
ciple behind our contrastive learning-based attack can be
understood from two perspectives:
• Leverage the originally matched texts as negative sam-

ples to push aligned image-text pairs apart. This broadly
corresponds to the objective of traditional untargeted ad-
versarial attacks.

• Additionally, the proposed paradigm introduces dissimi-
lar texts as positive samples to further pull the adversarial
image out of its original subspace and relocate it to an
incorrect feature area.

By simultaneously harnessing the collaborative effects of
push (negative samples) and pull (positive samples), the
proposed contrastive framework achieves exceptional at-
tack performance, which has been validated by comprehen-
sive experimental results. Besides, we also explore several
potential alternative loss functions that more directly align
with the common goal of untargeted attack in Table 5, in-
cluding maximizing the cosine distance LCos or MSE dis-
tance LMSE between features of matched image-text pairs.

Recall that LCL and LDis denote our designed con-
trastive loss and unimodal loss terms respectively. As ob-
served, the integration of LCL consistently brings signifi-
cant ASR improvements, verifying the rationality and supe-
riority of the adopted contrastive loss.



Table 6. Comparison of BERTScore between clean and adversarial texts across different surrogate models.

Method ALBEF TCL CLIPViT CLIPCNN

P R F1 P R F1 P R F1 P R F1

Co-Attack [10] 0.8328 0.8589 0.8455 0.8325 0.8588 0.8453 0.8269 0.8526 0.8394 0.8271 0.8530 0.8397
SGA [5] 0.8389 0.8654 0.8518 0.8376 0.8646 0.8509 0.8416 0.8697 0.8553 0.8378 0.8650 0.8511

Ours 0.8891 0.8613 0.8748 0.8924 0.8687 0.8802 0.8746 0.8684 0.8713 0.8948 0.8842 0.8893

E. Semantic Similarity Analysis

The basic objective of untargeted adversarial attacks is to
fool the victim model to output incorrect predictions [3],
while the attacker is supposed to preserve semantic similar-
ity between original and adversarial samples to ensure at-
tack imperceptibility. In our implementation, we follow the
rigorous setup in prior works [5, 8, 10] that modify only one
single word to preserve the attack stealthiness. To quanti-
tatively analyze the influence, we provide the BERT scores
[11], which calculate the P (precision), R (recall), and F1
(F1 score), to measure the semantic distance between 5,000
clean and adversarial sentences in Table 6. Note that we
provide existing well-acknowledged sample-specific algo-
rithms Co-Attack [10] and SGA [5] as references.

As observed, C-PGC generally acquires higher similarity
scores than existing sample-specific methods across various
surrogate models, which validates that C-PGC achieves an
eligible perturbation strategy in terms of text perturbation
imperceptibility. Basically, the lower semantic similarity of
sample-specific approaches stems from their word-selection
mechanism, which maximizes the semantic distance tai-
lored to every input sentence for attack enhancement. I.e.,
these methods select the adversarial word that maximizes
the distance between the original and perturbed texts for
every input sentence, which inherently leads to relatively
larger semantic deviations. This highlights that our method
achieves a better balance between efficacy and stealthiness.

F. Multimodal Alignment Destruction

To provide more intuitive evidence that our C-PGC suc-
cessfully destroys the image-text alignment relationship, we
compute the distance between the encoded image and text
embeddings before and after applying the UAP. For an input
pair (v, t), we calculate the relative distance drel by:

drel =
||(fI(v + δv)− fT (t⊕ δt)||2 − ||fI(v)− fT (t)||2

||fI(v)− fT (t)||2
.

(1)
We provide the distances averaged on 5000 image-text pairs
from Flickr30K in Table 7. Benefiting from our delicate
designs, C-PGC achieves better disruption of the aligned
multimodal relationship, thereby boosting the generaliza-
tion ability and transferability of the produced UAP.

Table 7. Average relative cross-modal feature distances.

Source Method ALBEF TCL BLIP X-VLM CLIPViT CLIPCNN

ALBEF
GAP 7.18 6.54 0.91 1.74 0.31 0.98
ETU 8.70 8.02 0.81 2.85 0.36 1.32

C-PGC 8.83 14.95 2.73 6.09 3.42 3.92

TCL
GAP 4.02 24.27 0.91 0.87 0.12 0.07
ETU 5.57 26.32 0.55 2.56 1.47 0.55

C-PGC 6.43 27.11 3.64 4.35 2.56 2.94

BLIP
GAP 3.17 4.67 11.82 1.74 -1.71 -0.98
ETU 5.26 6.03 13.14 2.90 0.25 1.14

C-PGC 6.41 12.15 13.64 4.35 1.71 1.96

G. Detailed Architecture of the Generator
The architecture of our cross-modal knowledge conditioned
perturbation generator is illustrated in Figure 2, which pri-
marily consists of several deconvolution layers for upsam-
pling and transformer layers for cross-modal information.
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Fig. 2: Illustration of the designed generator’s architecture.

H. More Visualization Results
This section presents a rich visual analysis of the proposed
attack on a series of downstream tasks. Specifically, we first
provide the visualization of the image retrieval task using
the MSCOCO dataset in Fig. 3. Besides, we generate the
UAP using the ALBEF model for the visual grounding (VG)
task. As illustrated in Fig. 4, the prediction bounding boxes
exhibit a notable deviation from the clean predictions, ver-
ifying that our generated adversarial samples significantly
interfere with the multimodal alignment. In the visual en-
tailment (VE) task, we employ BLIP as the victim model
and present the results in Fig. 5. These qualitative visual-
izations again demonstrate the remarkable attack effects of
our proposed method on various downstream tasks.



Mountain climber 
luckily safely lands 
in the water.

A person in blue is 
the only person 
luckily currently
throwing their ball 
at a bowling alley.

ALBEF TCL CLIPViT CLIPCNN BLIPX-VLM

Fig. 3: Attacks results of C-PGC on the image retrieval task. The red indicates the UAP and the crossed-out word is the replaced one.
We generate the word on ALBEF and test it on 6 target models. All retrieved images fail to correspond to the query text, validating the
rationality of our contrastive learning-based attacks.

guy with hat object with hat

suitcase with 
nothing on it

suitcase with 
object on it plain hot dog object hot dog

blue shirt 
hands on hips

blue object
 hands on hips

bowl of rice object of rice

man seated object seated

man not jumping object not jumping

blue plaid thingy 
under red suitcase

blue plaid object 
under red suitcase

orange next 
to banana

orange next 
to object table under laptop object under laptop

cow staring 
at you

cow staring 
at object dark colored lamb dark colored object

Fig. 4: Illustration of visual grounding. The predictions of clean pairs are on the left while the predictions of adversarial samples are on
the right. The red word is the adversarial word perturbation.



The guys are walking 
in the park.

Two surfers out surfing
 in the early morning.

Neutral Contradiction

A semi-trailer is unloaded
 by a group of people.

The toddler gave their 
friend a red cape.
Contradiction

A father and a son are 
playing baseball.

Neutral

Neutral Entailment

A dog is sprinting across
 the ground.

Entailment Contradiction

A street vendor is 
selling toys.

Entailment

A superhero is riding
 a horse.

Neutral

A man holds a large
 bass drum.

Contradiction Entailment

The staturte is on 
the water.

Five men are dressed
 as pumpkins.

Neutral Contradiction

The guys are getting 
in the park.

Two surfers out getting
 in the early morning.

Contradiction Neutral

Neutral Entailment

A superhero is getting
 a horse.

A semi-trailer is getting
 by a group of people.

The men are cooking
 in the kitchen.

A dog is getting across
 the ground.

Entailment Contradiction

The men are getting
 in the kitchen.

A street vendor is 
getting toys.

Entailment Neutral

A man getting a large
 bass drum.

The toddler getting their 
friend a red cape.

A father and a son are 
getting baseball.

The staturte is getting
the water.

Contradiction Entailment

Five men are getting
 as pumpkins.

Fig. 5: Illustration of the visual entailment task. The red indicates the universal adversarial word. It can be observed that all predictions do
not match with the ground truth.



References
[1] Gavin Weiguang Ding, Luyu Wang, and Xiaomeng Jin. Ad-

vertorch v0. 1: An adversarial robustness toolbox based on
pytorch. arXiv preprint arXiv:1902.07623, 2019. 4

[2] Virginie Do, Oana-Maria Camburu, Zeynep Akata, and
Thomas Lukasiewicz. e-snli-ve: Corrected visual-textual en-
tailment with natural language explanations. arXiv preprint
arXiv:2004.03744, 2020. 1

[3] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun
Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial at-
tacks with momentum. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 9185–9193, 2018. 5

[4] Gintare Karolina Dziugaite, Zoubin Ghahramani, and
Daniel M Roy. A study of the effect of jpg compression on
adversarial images. arXiv preprint arXiv:1608.00853, 2016.
4

[5] Dong Lu, Zhiqiang Wang, Teng Wang, Weili Guan,
Hongchang Gao, and Feng Zheng. Set-level guidance at-
tack: Boosting adversarial transferability of vision-language
pre-training models. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 102–111,
2023. 1, 5

[6] Muzammal Naseer, Salman Khan, Munawar Hayat, Fa-
had Shahbaz Khan, and Fatih Porikli. A self-supervised
approach for adversarial robustness. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 262–271, 2020. 4

[7] Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash
Vahdat, and Anima Anandkumar. Diffusion models for
adversarial purification. arXiv preprint arXiv:2205.07460,
2022. 4

[8] Haodi Wang, Kai Dong, Zhilei Zhu, Haotong Qin, Aishan
Liu, Xiaolin Fang, Jiakai Wang, and Xianglong Liu. Trans-
ferable multimodal attack on vision-language pre-training
models. In 2024 IEEE Symposium on Security and Privacy
(SP), pages 102–102. IEEE Computer Society, 2024. 1, 4, 5

[9] Ning Xie, Farley Lai, Derek Doran, and Asim Kadav. Visual
entailment: A novel task for fine-grained image understand-
ing. arXiv preprint arXiv:1901.06706, 2019. 1

[10] Jiaming Zhang, Qi Yi, and Jitao Sang. Towards adversarial
attack on vision-language pre-training models. In Proceed-
ings of the 30th ACM International Conference on Multime-
dia, pages 5005–5013, 2022. 1, 5

[11] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. Bertscore: Evaluating text gener-
ation with bert. In International Conference on Learning
Representations. 5


