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Supplementary Material

A. Pseudocode of the Proposed Algorithm

We present the pseudocode of our proposed attack algo-
rithm for image modality in Alg. 1. Note that the text at-
tacks are completely symmetrical as illustrated in Sec. 3.

Algorithm 1 Pseudocode of universal image attacks

Require: G,,(-): the perturbation generator; D: the mul-
timodal training set; f;, f7: image encoder and text en-
coder of the surrogate VLP model; K: the max itera-
tion; €,: the perturbation budget; N: the scaling times;

Ensure: Universal image perturbation 6,;

1: Initialize the fixed noise z, with Gaussian distribution;
2: for ¢ < 0 to K do

3 Randomly sample an image-text pair (v,t) ~ Dy;
4: 6’0 = Clipeu (Gw(z’u; fT (t))), Vadv =V + 61);

5 Augment v and v,4, into different scales and apply

random Gaussian noises to obtain v.= {v1...,un}
and Vg, = {v§% ... 03},
6: Randomly sample a batch of text sets from D, and

obtain tp,s = {t} ...t} by selecting the one with
the farthest feature distance from the clean image v;
Compute Lo, with veg,, t and t,,, by Eq. (3);
Compute L p;s with v and v,4, by Eq. (4);
: Optimize the generator G, based on Eq. (5);
10: Backward pass and update G, ;
11: end for
12: Return ¢,

B. More Training Details

For Flickr30K and MSCOCO, we randomly sample 30,000
images and their captions from the training set to train
our perturbation generator. For SNLI-VE and RefCOCO+,
we learn the C-PGC directly using their training sets with
29,783 and 16,992 images, respectively. Since an image
corresponds to multiple text descriptions in these datasets,
we calculate the average of their textual embedding as the
multimodal condition for the cross-attention modules.

We initialize the noise variable z, as a 3 X 3 matrix.
Meanwhile, the initial noise z;’s dimensions in the text
modality depend on the size of the hidden layer within the
specific VLP model. Concretely, we set its dimension to
1 x 3 for ALBEF, TCL, BLIP, and X-VLM, while 1 x 2
for the CLIP model. When computing the multimodal con-
trastive loss L¢ 1, the temperature 7 is set as 0.1. The gen-
erator is trained over 40 epochs with the Adam optimizer

at a learning rate of 24, Following previous works [5, 8],
we employ the attack success rate (ASR) as our quantita-
tive measurement in ITR tasks by computing the extent to
which the adversarial perturbations result in victim models’
performance deviations from the clean performance.

C. More Experimental Results

In this section, we provide more experimental results of our
method in various tasks and scenarios.

Visual entailment tasks. Given an image and a textual
description, visual entailment involves determining whether
the textual description can be inferred from the semantic in-
formation of the image. We align with previous VLP attacks
[8, 10] and conduct experiments on the SNLI-VE [9] dataset
using the ALBEF and TCL models. Note that the Baseline
represents the clean performance of the target model on the
clean data and the orange and green indicate ALBEF and
TCL as source models respectively. The results presented
in Fig. | reveal that C-PGC obtains impressive attack ef-
fects by decreasing the average accuracy by nearly 20%.
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Fig. 1: Accuracy of VE tasks for different source and target mod-
els. The Baseline indicates the clean performance.

Notably, [2] has reported a large number of annotation
errors in the labels of the SNLI-VE corpus used for VE
tasks. Therefore, the presented results are only for exper-
imental integrity and reference purposes.

Image-text retrievals on MSCOCO dataset. We then
supplement the ASR of the ITR tasks on the MSCOCO
dataset in Table 1. The results again reveal that C-PGC
greatly enhances the attack. Particularly in the more real-
istic and challenging transferable scenarios, the proposed
method achieves considerably better performance, e.g.,
82.49% and 76.24% increase in ASR of TR and IR tasks



Table 1. ASR (%) of different methods for image-text retrieval tasks on MSCOCO dataset. TR indicates text retrieval based on the input

image, while IR is image retrieval using the input text.

Source  Method | ALBEF TCL X-VLM CLIPyir CLIPcxN BLIP
| R. IR | TR IR | TR IR | TR IR | TR IR | TR 1R
GAP | 82.65 8435 | 53.6 4546 | 1509 15.64 | 25.18 29.94 | 28.06 35.28 | 37.44 33.61
ALBEF  ETU | 83.6 88.98 | 27.43 2447 | 2039 19.94 | 2854 35.05 | 37.01 44.72 | 2225 22.03
Ours | 96.18 95.09 | 82.49 76.24 | 39.97 4858 | 59.71 67.05 | 61.27 70.8 | 59.18 63.89
GAP | 5592 4822|9516 9229 | 17.34 17.01 | 2873 31.19 | 3227 39.81 | 43.59 39.64
TCL ETU | 60.09 50.62 | 9328 89.28 | 27.19 2541 | 33  37.86 | 45.83 5224 | 39.59 36.31
Ours | 76.62 71.17 | 96.72 93.88 | 42.99 484 | 7032 79.08 | 74.1 8297 | 6235 66.97
GAP | 2635 2372 | 27.8 2291 | 951 88.84 |3239 3816 | 52 554 |24.67 2265
X-VLM  ETU | 2294 21.63 | 22.01 19.65 | 96.23 9297 | 28.81 34.26 | 4853 5274 | 20.52 193
Ours | 51.46 65.71 | 52.8 64.99 | 98.89 95.79 | 67.42 7545 | 7549 8258 | 5574  66.7
GAP | 3596 3191 | 37.33 3256 | 33.42 29.25 | 97.71 96.04 | 74.63 74.67 | 33.47 31.99
CLIPyy  ETU | 31.5 29.62 | 3325 3038 | 3236 29.92 | 95.88 96.34 | 82.07 83.41 | 30.62 30.7
Ours | 46.92 53.89 | 46.03 50.87 | 41.49 48.6 | 98.74 98.01 | 81.58 86.5 | 47.35 57.55
GAP | 1357 2521 | 19.05 28.87 | 11.59 23.13 | 2746 43.16 | 73.18 81.6 | 1525 27.94
CLIPcny ETU | 2171 21.92 | 2233 22.8 | 2477 2393 | 3499 403 | 9534 95.14 | 20.06 22.26
Ours | 33.41 47.96 | 38.81 50.78 | 36.59 48.83 | 66.04 72.59 | 9473 9521 | 42.39 57.84
GAP | 1223 2394 | 1449 2544 | 691 17.81 | 2032 37.00 | 26.81 4359 | 47.21 73.33
BLIP ETU | 46.07 43.27 | 4458 37.61 | 33.14 29.85 | 33.77 40.02 | 48.28 52.88 | 81.27 83.59
Ours | 61.95 60.92 | 60.95 59.57 | 51.81 52.53 | 62.23 7251 | 69.61 78.44 | 91.67 90.42
Table 2. ASR (%) of Cross-domain attacks on six models from Flickr30k to MSCOCO and vice versa.
Setting  Source | ALBEF TCL X-VLM CLIPy;r CLIPcnn BLIP
| RRm IR | TR. IR | TR IR | TR IR | TR IR | TR 1R
ALBEF | 96.83 94.69 | 81.46 74.87 | 4479 51.64 | 63.68 73.06 | 69.77 78.09 | 68.88 70.61
Flickisok  TCL | 7827 73.17 | 97.83  95.03 | 4046 4734 | 64.98 7327 | 70.96 78.18 | 6371  67.1
¢ l X-VLM | 50.63 6591 | 5323 65.65 | 9591 93.32 | 6551 7472 | 75.69 8193 | 57.69 67.28
Mscoco  CLIPvir | 49.88 5339 | 4947 5221 | 47.77 4852 | 955 97.01 | 83.05 8538 | 5097 5793
CLIPcny | 43.05 5419 | 43.04 5439 | 43.73 5394 | 673 74.39 | 98.61 97.41 | 4722 59.11
BLIP | 5445 5551 | 5563 53.02 | 41.07 46.93 | 61.69 69.24 | 6552 7523 | 83.19 82.17
ALBEF | 88.08 87.28 | 58.9 61.53 | 17.58 36.07 | 39.78 61.08 | 4728 64.95 | 35.02 494
Mscoco  YCL | 4758 537 | 87.27 83.55 | 186 3445|5185 7222|5946 7609 | 3775 53.08
. X-VLM | 2539 46.74 | 27.33 49.13 | 79.98 81.72 | 4273 66.48 | 59.46 73.07 | 31.65 51.48
Flickrsok  CLIPwir | 2107 39.47 | 24.53 4244 | 1545 3652 | 93.97 9553 | 6295 7721 | 2555 4591
CLIPcny | 13.87 3793 | 1936 4125 | 1585 37.47 | 42.61 66.73 | 85.75 88.76 | 2292 48.45
BLIP | 332 4607 | 36.02 47.97 | 23.58 3848 | 4397 653 | 5635 71.08 | 71.91 73.62

when transferring from ALBEF to TCL, confirming the su-
periority of our contrastive learning-based paradigm.

Cross-domain scenarios. We proceed to discuss the at-
tack performance of the proposed algorithm in a more chal-
lenging scenario where there is an obvious distribution shift
between the training dataset and the test samples. Specifi-
cally, we generate universal adversarial perturbations based
on MSCOCO or Flickr30K and evaluate them accordingly
on the other dataset. We present the attack success rates on
the retrieval tasks across six models in Table 2. It can be

observed that the domain gap indeed has a negative effect
on attack performance. However, our method still main-
tains excellent ASR in most cases, unveiling its outstanding
cross-domain transferability.

Results of R@5 and R@10. As aforementioned, we
supplement the ASR of the ITR tasks based on R@5 and
R @10 metrics and provide the attack success rates in Table
3. Obviously, our proposed C-PGC still consistently attains
better performance than the baseline method ETU, regard-
less of the evaluation measurements for retrieval results.



Table 3. Attack success rates (%) regarding R@5 and R@ 10 metrics of our C-PGC and ETU for image-text retrieval tasks.

Dataset Source  Metho d\ ALBEF TCL X-VLM CLIPyir CLIPcnn BLIP
| TR. IR | TR IR | TR IR | TR IR | TR IR | TR IR
aLppr ETU | 6854 77.68 | 1441 1443 | 41 641 | 611 1697 | 1157 2311 | 936 133
Ours | 83.67 80.02 | 41.84 42.18 | 6.9 17.19 | 1834 41.03 | 26.22 49.42 | 2425 34.59
TCL ETU | 1443 1623 | 84.88 8043 | 2.4 5.8 56 1737 | 1327 2427 | 724 1098
Ours | 29.76 35.62 | 90.89 84.18 | 3.2  13.65 | 20.93 42.06 | 2527 49.1 | 16.5 30.32
Flickr30K  y yppy  ETU | 381 585 | 39 651 | 892 8457 | 518 169 | 1433 2452 | 312 78]
(R@5) Ours | 7.62 251 | 871 2663 | 89.2 85.84 | 1938 4248 | 30.89 50.7 | 13.68 29
CLIPw ETU | 531 788 | 7.51 1042 | 47 892 | 7642 8454 | 3546 41.73 | 5.03 102
VIt Ours | 631 1751 | 801 19.65| 43 151 | 76.89 852 | 39.6 54.68 | 9.15 23.23
CLIP ETU 17 502 | 34 716 | 14 602 | 622 1761 | 8439 8785 | 231 826
NN Ours 441 198 | 641 2519 | 4.8 2349 | 18.76 43.82 | 90.34 88.12 | 8.95 26.89
BLIP ETU | 822 10.11 | 671 1046 | 32 562 | 528 1639 | 924 2197 | 4598 73.75
Ours | 1443 21.67 | 1391 2159 | 54 14.54 | 18.03 36.26 | 23.89 44.79 | 59.26 74.82
aLppr  ETU [ 8173 8876 | 1345 1151 | 901  9.32 | 1685 20.74 | 226 28.86 | 10.96 12.02
Ours | 9336 91.56 | 70.76 62.31 | 19.97 30.46 | 41.58 51.23 | 44.14 55.98 | 41.08 49.22
TCL ETU | 4494 3645 | 9021 84.54 | 13.46 13.1 | 19.52 23.03 | 30.81 36.37 | 25.63 25.11
Ours | 60.62 56.21 | 94.89 90.33 | 22.08 30.38 | 53.14 64.98 | 58.85 70.77 | 4528 53.55
MSCOCO  yyim ETU | 1103 1LI1[ 1022 9.24 | 9436 90.02 | 17.56 208 | 3345 38.14 | 10.08 10.12
(R@5) Ours | 31.59 48.69 | 32.1 48.11 | 96.7 91.66 | 49.53 60.82 | 59.83 69.59 | 374 525
CLIPw ETU | 1589 16.01 | 18.61 16.11 | 16.45 16.61 | 93.12 94.66 | 7297 755 | 17.1 19.26
VIt Ours | 25.69 3595 | 24.69 33.14 | 21.37 31.38 | 96.7 96.49 | 70.76 77.86 | 28.72 42.01
CLIP ETU | 955 1034 | 99 1095 | 1098 11.96 | 22.63 26.84 | 90.7 92.07 | 9.69 12.25
N Ours | 1683 31 | 19.86 34.54 | 18.84 34.02 | 5021 59.2 | 90.94 9043 | 255 44.89
BLIP ETU | 29.6 29.6 | 2695 2197 | 17.67 16.14 | 20.83 24.27 | 32.77 36.72 | 76.16 80.69
Ours | 42.56 43.73 | 41.72 41.8 | 31.05 35.63 | 4437 579 | 5447 66.01 | 81.71 81.91
aLppr ETU | 658 7489 | 10 936 | 28 379 | 243 1104 | 695 1579 | 6.62 857
Ours | 80.5 75.17 | 348 3428 | 42 1172 | 9.83 31.14 | 16.87 39.40 | 18.76 27.08
TCL ETU 114 1135 | 822 7733 | 1.6 338 | 304 1063 | 706 17.14 | 491 734
Ours | 242 2732 | 892 8073 | 21 933 | 1277 324 | 1697 38.63 | 12.54 24.1
Flickr30K  yyiy  ETU 19 348 | 24 348 | 871 81.87 | 3.14 1091 | 859 16.66 | 2.01 472
(R@10) Ours 41 1779 | 4.6 1927 | 863 8294 | 11.14 31.49 | 21.06 403 | 7.32 21.81
CLIPw ETU 36 475 | 46 643 | 27 547 | 6817 7893 | 272 3294 | 3.11 6.35
Vit Ours 42 1145 | 4.6 13.08 | 2.8 10.15 | 67.98 79.46 | 29.75 4556 | 552 17.23
CLIP ETU 06 264 | 16 386 | 07 348 | 3.65 1132|8037 8518 | 1.2 531
N Ours 24 1459 | 35 1836 | 2.3 1795 | 11.75 3423 | 864 83.83 | 552 20.86
BLIP ETU 65 652 | 49 657 | 1.8 332 | 263 1052 | 552 1457 | 4243 71.26
Ours | 112 1549 | 91 1414 | 28 10.19 | 9.83 27.46 | 1483 3443 | 5346 72
aLppr ETU | 8L14 87.58 | 908 792 | 544 633 | 1262 1615|1771 2305 | 7.63 9.5
Ours | 91.58 89.62 | 64.5 553 | 13.81 23.34 | 33.3 43.75 | 35.82 48.38 | 33.77 43.11
TCL ETU | 386 3039 | 8856 826 | 892 93 | 14.61 1843|2524 3006 | 2037 21.41
Ours | 52.59 49.09 | 93.63 88.53 | 15.04 2325 | 44.22 58.02 | 50.16 63.95 | 37.77 47.26
MSCOCO y.yim ETU | 741 737 | 676 627 | 9317 8866 | 1293 1643 | 2832 3247 | 673 801
(R@10) Ours | 23.01 40.39 | 23.15 40.07 | 9497 88.95 | 4024 53.74 | 52 62.7 | 30.43 45.67
CLIPw ETU | 11.05 11.5 | 13.67 11.67 | 1121 12.14 | 91.47 938 | 67.7 71.14 | 13.03 154
VIt Ours | 17.87 2852 | 1748 26.09 | 14  24.67 | 95.55 9531 | 64.04 7275 | 22.05 35.65
CLIP ETU | 605 7.02 | 654 754 | 697 836 | 17.65 21.66 | 88.13 90.16 | 6.73  9.45
N Qurs | 10.77 2411 | 13.34 27.53 | 12.31 28.03 | 41.33 52.02 | 88.28 87.14 | 20.26 39.43
BLIP ETU | 23.63 244 | 19.69 1637 | 11.55 11.86 | 163 19.66 | 26.04 30.64 | 73.88 77.63
Ours | 33.64 36.14 | 32.15 33.8 | 22.64 28.52 | 3607 503 | 47 59.07 | 78.39 78.98




Table 4. ASR (%) of ITR tasks under defense strategies. The surrogate model is ALBEF and the dataset is Flick30K. LT denotes the

LanguageTool that corrects adversarial words within the sentence.

Method | ALBEF TCL X-VLM CLIPy;r CLIPcaN BLIP

| TR IR | TR. IR | TR, IR | TR IR | TR IR | TR IR
Gaussian | 37.92 4949 | 324 47.04 | 1931 3779 | 4249 6561 | 50 7223 | 29.65 48.77
Medium | 53.13  61.6 | 39.54 51.96 | 20.43 39.69 | 46.31 66.92 | 579 7451 | 3375 52.68
Average | 29.09 4491 | 29.61 4472 | 17.89 36.07 | 4298 65.42 | 49.74 7248 | 27.55 46.9
JPEG | 593 637 | 4234 5252 | 21.65 41.58 | 4126 6577 | 535 72.62 | 37.01 55.04
DiffPure | 6434 74.63 | 6522 748 | 66.06 75.19 | 78.08 867 | 82.25 88.03 | 70.45 79.09
NRP | 3233 40.63 | 20.19 39.23 | 14.63 32.62 | 484 69 | 5972 74.09 | 30.28 52.2
NRP+LT | 29.05 35.23 | 21.33 37.41 | 1555 29.63 | 47.19 67.35 | 56.82 73.47 | 2823 50.59

Table 5. ASR results of the proposed method with different loss functions on Flickr30 when the surrogate model is ALBEF.

Method ALBEF TCL X-VLM CLIPvy;it CLIPcnN BLIP
TR IR TR IR TR IR TR IR TR IR TR IR

Lyse 12.02 30.75 1439 3508 11.41 30.79 3732 56.05 40.17 5639 19.66 37.33
Lcos 57.55 674 37.06 4945 107 2848 37.49 583 40.87 5839 2333 39.44
Lo 76.46 82.46 56.52 62.61 14.33 33.61 4298 62.81 46.11 65.58 27.13 46.44
Lysg+Lpis 81.09 8371 4876 56.54 17.58 3572 415 6472 4741 7034 3596 51.76
LcoostLpis 6520 7271 36.13 50.06 18.63 36.74 4223 65.17 5091 69.78 3691 50.69
Lor+Lpis 9013 88.82 62.11 6448 2053 3938 431 6593 544 7251 4479 56.36

Performance under Defenses. We next analyze several
defense strategies to mitigate the potential harm from C-
PGC. Concretely, we totally align with TMM [8] and con-
sider several input preprocessing-based schemes, including
image smoothing [1] (Gaussian, medium, average smooth-
ing), JPEG compression [4], NRP [6], and the DiffPure [7],
a powerful purification defense using diffusion models. For
adversarial text correction, we choose the LanguageTool
(LT) [8], which has been widely adopted in various scenar-
ios due to its universality and effectiveness.

The attack results in Table 4 demonstrate that the pro-
posed attack still attains great ASR against different pow-
erful defenses. It also indicates that NRP+LT would be a
decent choice to alleviate the threat brought by C-PGC. An-
other noteworthy finding is that, although DiffPure [7] ex-
hibits remarkable performance in defending attacks in clas-
sification tasks, its ability is greatly reduced in V+L scenar-
ios since the denoising process could also diminish some
texture or semantic information that is critical for VLP mod-
els, thereby acquiring unsatisfactory defense effects.

D. Rationality behind the Loss Design

It is widely acknowledged that contrastive learning serves
as a powerful and foundational tool for modality alignment
in VLP models, establishing a nearly point-to-point rela-
tionship between image and text features. Since contrastive
learning can establish robust and precise alignment, lever-

aging the same technique to disrupt the established align-
ments is also promising to yield effective performance.

Taking image attack as an example, the underlying prin-
ciple behind our contrastive learning-based attack can be
understood from two perspectives:

Leverage the originally matched texts as negative sam-
ples to push aligned image-text pairs apart. This broadly
corresponds to the objective of traditional untargeted ad-
versarial attacks.
Additionally, the proposed paradigm introduces dissimi-
lar texts as positive samples to further pull the adversarial
image out of its original subspace and relocate it to an
incorrect feature area.
By simultaneously harnessing the collaborative effects of
push (negative samples) and pull (positive samples), the
proposed contrastive framework achieves exceptional at-
tack performance, which has been validated by comprehen-
sive experimental results. Besides, we also explore several
potential alternative loss functions that more directly align
with the common goal of untargeted attack in Table 5, in-
cluding maximizing the cosine distance L¢,s or MSE dis-
tance L5 between features of matched image-text pairs.
Recall that Loy, and Lp;s denote our designed con-
trastive loss and unimodal loss terms respectively. As ob-
served, the integration of Lc, consistently brings signifi-
cant ASR improvements, verifying the rationality and supe-
riority of the adopted contrastive loss.



Table 6. Comparison of BERTScore between clean and adversarial texts across different surrogate models.

Method | ALBEF TCL

CLIPvir

CLIPcnn

| P R FIL | P R

FI | P

R

F1 |

P

R

F1

Co-Attack [10]
SGA [5]
Ours

0.8389 0.8654 0.8518
0.8891 0.8613

0.8328 0.8589 0.8455 | 0.8325 0.8588 0.8453
0.8376  0.8646 0.8509 | 0.8416
0.8748 | 0.8924 0.8687 0.8802 | 0.8746

0.8269

0.8526 0.8394 | 0.8271
0.8697 0.8553
0.8684 0.8713 | 0.8948 0.8842 0.8893

0.8378

0.8530 0.8397
0.8650 0.8511

E. Semantic Similarity Analysis

The basic objective of untargeted adversarial attacks is to
fool the victim model to output incorrect predictions [3],
while the attacker is supposed to preserve semantic similar-
ity between original and adversarial samples to ensure at-
tack imperceptibility. In our implementation, we follow the
rigorous setup in prior works [5, 8, 10] that modify only one
single word to preserve the attack stealthiness. To quanti-
tatively analyze the influence, we provide the BERT scores
[11], which calculate the P (precision), R (recall), and F1
(F1 score), to measure the semantic distance between 5,000
clean and adversarial sentences in Table 6. Note that we
provide existing well-acknowledged sample-specific algo-
rithms Co-Attack [10] and SGA [5] as references.

As observed, C-PGC generally acquires higher similarity
scores than existing sample-specific methods across various
surrogate models, which validates that C-PGC achieves an
eligible perturbation strategy in terms of text perturbation
imperceptibility. Basically, the lower semantic similarity of
sample-specific approaches stems from their word-selection
mechanism, which maximizes the semantic distance tai-
lored to every input sentence for attack enhancement. le.,
these methods select the adversarial word that maximizes
the distance between the original and perturbed texts for
every input sentence, which inherently leads to relatively
larger semantic deviations. This highlights that our method
achieves a better balance between efficacy and stealthiness.

F. Multimodal Alignment Destruction

To provide more intuitive evidence that our C-PGC suc-
cessfully destroys the image-text alignment relationship, we
compute the distance between the encoded image and text
embeddings before and after applying the UAP. For an input
pair (v, t), we calculate the relative distance d,.; by:

(f1(v + 60) = fr(t @ 00)[l2 = |1 f1(v) = fr(D)]l2
1f1(v) = fr (D)2 (])'

We provide the distances averaged on 5000 image-text pairs
from Flickr30K in Table 7. Benefiting from our delicate
designs, C-PGC achieves better disruption of the aligned
multimodal relationship, thereby boosting the generaliza-
tion ability and transferability of the produced UAP.

d'r'el =

Table 7. Average relative cross-modal feature distances.

Source  Method | ALBEF | TCL | BLIP | X-VLM | CLIPyir | CLIPcny
GAP | 7.8 | 654 | 091 | 174 031 0.98
ALBEF ETU | 870 | 802 | 081 | 285 036 1.32
C-PGC | 883 |1495| 273 | 6.09 3.42 3.92
GAP | 402 |2427] 091 | 087 0.12 0.07
TCL  ETU | 557 [2632] 055 | 256 1.47 0.55
C-PGC | 643 |27.11| 3.64 | 435 2.56 2.94
GAP | 317 | 467 |1182] 174 | -171 -0.98
BLIP ETU | 526 | 6.03 |13.14| 290 025 114
C-PGC | 641 |12.15|13.64| 435 171 1.96

G. Detailed Architecture of the Generator

The architecture of our cross-modal knowledge conditioned
perturbation generator is illustrated in Figure 2, which pri-
marily consists of several deconvolution layers for upsam-
pling and transformer layers for cross-modal information.
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Fig. 2: Illustration of the designed generator’s architecture.

H. More Visualization Results

This section presents a rich visual analysis of the proposed
attack on a series of downstream tasks. Specifically, we first
provide the visualization of the image retrieval task using
the MSCOCO dataset in Fig. 3. Besides, we generate the
UAP using the ALBEF model for the visual grounding (VG)
task. As illustrated in Fig. 4, the prediction bounding boxes
exhibit a notable deviation from the clean predictions, ver-
ifying that our generated adversarial samples significantly
interfere with the multimodal alignment. In the visual en-
tailment (VE) task, we employ BLIP as the victim model
and present the results in Fig. 5. These qualitative visual-
izations again demonstrate the remarkable attack effects of
our proposed method on various downstream tasks.



in the water.

A person in blue is
the only person

luckily egrrently
throwing their ball

at a bowling alley.

ALBEF T X-VLM CLIPy;r CL|PCNN BLIP

Fig. 3: Attacks results of C-PGC on the image retrieval task. The red indicates the UAP and the crossed-out word is the replaced one.
We generate the word on ALBEF and test it on 6 target models. All retrieved images fail to correspond to the query text, validating the
rationality of our contrastive learning-based attacks.
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Fig. 4: Illustration of visual grounding. The predictions of clean pairs are on the left while the predictions of adversarial samples are on
the right. The red word is the adversarial word perturbation.
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Entailment mm==) Contradiction Entailment mm==) Contradiction

A street vendor is A street vendor is
selling toys. getting toys.

Entailment =m==)  Neutral

bass drum. bass drum.

Entailment m=m==)  Neutral

A man holds a large ' A man getting a large

o '\~

A father and a son are ' A father and a son are

The toddler e their The toddler ng their
friend a red cape. friend a red cape. playing baseball. getting baseball.
Contradiction m===)  Neutral Contradiction m===) Neutral

1

The staturte is on ' The staturte is getting

the water. the water.

Contradiction m===)  Entailment

Five men are dressed Five men are getting
as pumpkins. as pumpkins.

Contradiction m===) Entailment

Fig. 5: Illustration of the visual entailment task. The red indicates the universal adversarial word. It can be observed that all predictions do
not match with the ground truth.
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