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Supplementary Material

This appendix contains supplementary explanations and
experiments to support our proposed proxy-bridged game
Transformer (PGformer). Section A supplements the set-
tings for the three datasets, including the descriptions of the
ExPI, illustrations for the three splits, and explanations for
CMU-Mocap and MuPoTS-3D settings used in our experi-
ments. Section B provides more experiment details, results,
ablation studies and visualizations.

A. More Information about the Dataset
A.1. ExPI Settings
As described in Section 4.1, 16 actions are recorded in the
ExPI dataset, which are split into three data splits: com-
mon action split, single action split and unseen action split.
Seven of them are common actions (A1–A7), performed by
both of the 2 couples. In our experiment, we mainly forcus
on the common action split and unseen action split.

We use superscript and subscript to denote the couple
number and action split respectively, for example, the com-
mon action performed by couple 1 is denoted as A1

c . The
other nine actions are couple-specific and performed by
only one of the couples. The actions A8–A13 in unseen ac-
tion split are performed by couple 1, denoted as A1

u; while
the actions A14–A16 performed by couple 2 are represented
as A2

u.

Common action split. The common actions performed
by different couples of actors are considered as training and
testing data. Then, training and testing sets contain the same
actions but are performed by different persons. In our ex-
periment, following the setting in [13], A2

c is the training
set and A1

c is the testing set.

Single action split. In this split, 7 action-wise models are
trained independently for each common action by treating
the action from couple 2 as the training set and the same
action from couple 1 as the corresponding testing set.

Unseen action split. The entire set of common actions
including A1

c and A2
c are used as the training set for unseen

action split, while the unseen actions {A1
u,A2

u} are used as
the testing set. Since the testing actions do not appear in the
training process, this unseen action split aims at measuring
the generalization ability of models.

A.2. CMU-Mocap and MuPoTS-3D Settings
CMU-Mocap contains a large number of scenes with a sin-
gle person moving and a small number of scenes with two

persons interacting and moving. Wang et al. [30] sampled
from these two parts and mix them together as their training
data. All the CMU-Mocap data were made to consist of 3
persons in each scene, and the testing set was sampled from
CMU-Mocap in a similar way. The generalization ability
of the model is evaluated by testing on the MuPoTS-3D (2
– 3 persons) and Mix1 (6 persons) datasets with the model
trained on the entire CMU-Mocap dataset.

B. Experiments

B.1. More Implementation Details

ExPI For training our PGformer on ExPI, we follow the
same implementation settings as in [13]. Specifically, we
predict future motion for 1 second in a recursive manner
based on the observed motion of 50 frames. The network is
trained by the Adam optimizer with an initial learning rate
of 0.005, which is decayed by a rate of 0.11/E (E is the total
number of epochs) every epoch. Our model is trained for 40
epochs with a batch size of 32, and the average MPJPE loss
is calculated for 10 predicted frames. And we find that XIA-
GCN [13] also has to be trained by 40 epochs to achieve the
reported results.

CMU-Mocap and MuPoTS-3D The model predicts the
future 45 frames (3 s) given 15 frames (1 s) of history as in-
put. All the persons’ pose sequences are forwarded in par-
allel to the PGformer layers to capture fine relations across
themselves and other persons. The gravity loss is not ap-
plied to control the center of gravity since the motions in
the two datasets are moderate.

Since these two datasets consist of 2–3 persons in each
scene, our XQA module should be made adaptive to them.
Specifically, each person is denoted as El, and other per-
sons are concatenated by time as Ef (e.g., 3 persons mean
3 pairs of El and Ef ). This implementation can be adap-
tive to any number of persons regardless of parameters. The
attention score map A ∈ RT×((n−1)×T ), where n is the
number of persons, could still be shared by Ql and Qf ,
but it only be used to obtain Ol for simplicity (Of is omit-
ted). The entire process is conducted in an iterative manner
over n with the shared parameters. Here we just provide
a straightforward solution for ≥ 3 extension, and this ap-
proach can be easily applied to the scenarios with more than
3 individuals. Instead of squeezing M frames XT−M+1:T

into one vector q, we use the last frame xt as q directly.



B.2. More Discussions on Quantitative Results
ExPI. We further compare the performance gains of our
PGformer with XIA-GCN [13] and HRI [20] for each joint
in Figure 5. As can be seen, our proposed method gets bet-
ter results almost on all the joints, and larger performance
gains are achieved for the joints of limbs. Since joints on the
limbs usually have higher motion frequencies, the figure in-
dicates that our PGformer can better handle high-frequency
motions. Comparing ours and XIA-GCN on the follower,
larger improvements are achieved for joints on the head and
shoulder. We reasonably conjecture that the follower has
more extreme motions in Lindy-hop dancing actions (see
qualitative results for verification), and our approach can
better handle extreme motions.

For SPGSN, we apply it adaptively to the ExPI dataset,
and decompose the body joints into upper body and lower
body following the same spirit as in its experiments on Hu-
man3.6M, CMU Mocap and 3DPW datasets.

Though BP [25] is a contemporaneous work, we still
compare ours with BP on ExPI in Table B5. Since BP used
different data and training settings from them used in other
models (e.g., XIA, MSR and HRI), we train BP by the train-
ing setup provided by ExPI benchmark [13] for fair com-
parisons. We also train our PGformer by the training set-
tings provided by BP (see the results of BP trained by XIA
and PGformer trained by BP). Besides, BP concatenates the
joints of the two persons as the nodes of GCN and apply
the spatial-temporal GCN, which means the number of per-
sons should be fixed, while our PGformer can be adaptive
to different numbers of persons.

Table B5. Results of MPJPE for the compared models. The mean
and standard deviation, denoted as avg and std, are computed by
5 runs. We run the code provided by BP official GitHub directly
and report the results in brackets since it has experiments on ExPI.

Time (sec) 0.2 0.4 0.6 1.0
PGformer avg ± std 53 ± 0.0 108 ± 0.4 156 ± 1.2 231 ± 1.4
PGformer (trained by BP) 48 100 149 229
BP-paper (our run) 39 (46) 86 (97) 129 (145) 202 (225)
BP (trained by XIA) 74 134 181 256

B.3. More Comparisons on Quantitative Results
Due to the limited space in main paper, we remove some

results of AME in Appendix Table B6. And we provide
a more complete percentages of improvement of our PG-
former compared with other methods at different forecast-
ing time in Figure B7.

B.4. More Qualitative Results
More qualitative results are provided at the end of this Ap-
pendix. We show the examples from each action in Fig-
ures B8 to B11. From these examples, with the increase of

the forecasting time, the result of our PGformer becomes
better than those of other compared methods that indepen-
dently predict the motions of each person (HRI [20] and
MSR-GCN [8]) or only study the interactions between the
historical motions (XIA-GCN [13]). For some extreme ac-
tions, taking A4 as an example, the poses predicted by
MSR-GCN and XIA-GCN at 1 sec forecasting time are
weird or look far apart from the ground truths. Nonethe-
less, our proposed PGformer successfully predicts the poses
which are closer to the ground truths.

B.5. More Ablation Study

Ablation studies are performed by using different compo-
nents and hyperparameters of our network on common ac-
tions to identify their roles. In the main paper, we compared
different designs of proxy impacting the attention map, and
here P ′ ∈ RT×T is given by: P ′ = WtTT T(Wt)

T.⊗ and
⊕ denote broadcast element-wise multiplication and addi-
tion, respectively. The results show that the way in Eq. (6)
influencing the bidirectional information performs the best.

We further ablate the pose encoder/decoder of our PG-
former, the inner elements of our XQA module with proxy
and different hyperparameters in Table B7. The variants
with different pose encoding and decoding networks are
first compared, and here ‘w/ GCN (enc)’ indicates only us-
ing a GCN layer as the pose encoder while using FC layers
as the pose decoder. Following the same spirit, our pro-
posed model, which can be denoted as ‘w/ GCN (dec)’, uses
an FC layer as the pose encoder and GCNs as the pose de-
coder. And ‘w/ GCN (both)’ uses GCNs both in the pose
encoder and decoder. ‘w/o GCN’ uses FC layers instead
of GCNs in the pose encoder and decoder. For all the vari-
ants, they use a one-layer encoding network and a four-layer
decoding network, which means the numbers of layers in
the pose encoding and decoding network are kept the same
whether FC layers or GCNs are used. From the ablation re-
sults, we can observe that using either FC layers or GCNs
as the pose encoding and decoding network has a negligible
impact on the performances, but using GCNs as the pose de-
coder is more suitable. In our experiment, we also find that
the pose decoding network with four layers performs better
since modeling the relationships of the joints is important
for the task of extreme motion prediction.

We then ablate the different hyperparameters including
the number of templates (M ), number of layers and dimen-
sions for model and FFN. From the results, we can find that
setting M a small number (M = 3 is suggested in our pro-
posed architecture) is sufficient to build proxy. From Tables
4 and B7, our suggested architecture has 4 PGformer lay-
ers in the encoder/decoder with D = 128 and dffn=1024
for model dimension and FFN, and 4 heads in MHA with
dh=64 for dimension of each head, which is simpler but
more suitable.



Table B6. Results of AME on the common action split with the two evaluation metrics (in mm). Lower values mean better performances.

The best and second best performances are respectively marked in bold and underlined.

Action A1 A-frame A2 Around the back A3 Coochie A4 Frog classic A5 Noser A6 Toss Out A7 Cartwheel AVG

Time (sec) 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0

Res-RNN [21] 59 102 132 167 62 112 152 229 57 102 139 215 48 85 113 157 51 90 120 167 53 94 126 183 74 131 178 265 58 102 137 197
LTD [19] 51 92 116 132 51 91 116 148 43 80 103 130 38 70 89 111 39 70 90 116 42 75 94 123 52 101 139 198 45 83 107 137
HRI [20] 34 69 97 130 44 84 115 150 32 65 91 121 27 56 82 112 28 58 85 121 34 66 88 115 42 83 120 171 34 69 97 131
MSR [8] 41 75 99 126 54 96 129 180 41 74 98 135 34 61 82 106 33 59 79 109 42 71 93 124 57 103 146 210 43 77 104 141
XIA [13] 32 68 99 128 41 82 116 163 29 58 84 116 24 50 73 96 24 51 75 109 31 62 86 114 41 81 115 160 32 65 93 127
Ours 31 66 93 120 40 78 109 150 27 54 77 109 23 50 74 98 24 49 71 104 31 61 84 112 37 77 111 155 30 62 88 121

Figure B7. Percentages of improvement of our PGformer compared with other methods at different forecasting time, on the common action
split, which are measured by taking the average of the percentages of improvement of average JME and AME error.

B.6. Results of More Metrics
In the main body, we reported Aligned Mean Error (AME)
results mainly on ExPI. Here, we expand our evaluation
to all datasets (CMU-Mocap and MuPoTS-3D) and report
AME and Final Displacement Error (FDE) [24] metric for
further comparison. Results of AME and FDE on ExPI and
CMU-Mocap is shown in B8. Although T2P surpass PG-
former in CMU-Mocap, PGformer keep the highest perfor-
mance on ExPI.

B.7. Hyperparameter Justification
In our two-person setup, we observed that typically one per-
son often plays a more stable role (e.g., the base in an ac-
robatic pair), which we term the “leader,” while the other
is more dynamic (the “follower”). We found that apply-
ing a stronger gravity constraint on the leader helps the
overall prediction remain physically plausible. The leader’s
center-of-mass (CoM) should not fluctuate unrealistically
(e.g., the base shouldn’t hop wildly if they are lifting some-
one). Thus, we set λl = 0.01 to moderately penalize large
CoM height deviations for the leader. The follower, con-
versely, might perform jumps or be lifted, so their CoM can
vary more; a heavy penalty could dampen these legitimate
motions. Therefore, we chose a much smaller weight λf =

Table B7. Ablation study on the pose encoder/decoder, the inner
elements of XQA module with proxy and different hyperparame-
ters. dffn is the hidden dimension of the FFN.

JME AME
Time (sec) 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0
Proposed 53 108 156 231 30 62 88 121
w/ GCN (enc) 53 108 157 233 31 63 90 125
w/ GCN (both) 53 108 157 233 31 62 88 122
w/o GCN 53 109 158 234 30 62 88 123
M = 8 53 109 159 236 31 63 90 125
M = 16 53 109 158 235 31 62 88 123
3-layer 53 110 159 236 31 63 90 124
6-layer 53 110 161 238 31 63 90 125
dffn=512 54 111 162 240 31 64 92 127
dffn=2048 54 110 161 237 31 63 91 126

0.0001 for the follower’s gravity loss, just enough to curb
egregious failures (like the follower “floating” or sinking)
without hindering necessary movement. We tried several
orders of magnitude for these weights. If λl is too high (e.g.,
0.1), the leader’s movements became overly constrained –
the model would sometimes predict an unnatural crouch to



Table B8. Results of AME and FDE on ExPI and CMU-Mocap.

ExPI CMU-Mocap
Method 0.2 0.6 1.0 0.2 0.6 1.0

AME
TBIFormer 34 98 133 27 84 118
T2P [14] 34 96 128 24 78 110
XIA 32 93 127 - - -
Ours 30 88 121 27 82 116

FDE
TBIFormer 36 114 180 18 72 133
T2P [14] 35 111 176 17 66 127
XIA 32 106 174 - - -
Ours 31 103 168 20 74 133

Table B9. Comparison of computational cost by using 40G-A100
with batch size of 32/64 in ExPI/CMU-Mocap’s training.

ExPI CMU-Mocap
Model Params GPU Memory Train Time Params Train Time
MSRGCN 12.73M 7% 45s/iter 15.10M 52s/iter
MRT 5.52M 12% 15s/iter 6.61M 20s/iter
TBIFormer 6.65M 18% 30s/iter 7.26M 39s/iter
XIA 8.50M 6% 25s/iter 9.8M 31/iter
Ours 7.89M 5% 40s/iter 7.17M 49s/iter

minimize CoM change, hurting accuracy. If λl is too low
(e.g., 0.001), we observed occasional instabilities in long-
term predictions (the leader’s pose would drift upward or
downward over 1s in unrealistic ways). The value 0.01
provided a good balance, significantly improving long-term
stability with minimal impact on short-term accuracy. Sim-
ilarly for λf , values higher than 0.0001 started to notice-
ably impede the follower’s extreme motions (e.g., under-
predicting jump height), whereas lower provided no bene-
fit. Thus 0.0001 was the sweet spot for follower: it subtly
guides the CoM without sacrificing dynamics.

B.8. Computational Cost
The comparison of computational cost is shown in B9. The
model size of our PGformer is insensitive to the input se-
quence’s shape, and the change in model parameters is
caused by the variation in the number of body joints in the
first embedding layer.

Ethics Statement. Our original intention for this research
is to protect people’s safety in autonomous vehicles, colli-
sion avoidance for robotics and surveillance systems. The
potential negative societal impacts include: (1) our ap-
proach can be used to synthesize highly realistic human mo-
tions, which might lead to the spread of false information;
(2) there are still concerns about the invasion of people’s
privacy since our approach requires real behavioral infor-
mation as input, and we are concerned that this may expose
the identity information. Nonetheless, on the positive side,
our model operates on the processed human skeleton repre-
sentations instead of the raw data, which contains much less
identification information.

Discussion of Limitations. This paper mainly focuses on
modeling multi-person extreme actions, while the motions
from different actions vary greatly. Hence, it is hard to ver-
ify the effectiveness of our PGformer on other extreme ac-
tions due to the lack of such datasets. Besides, we only
conduct the ablation study on ExPI to decide the architec-
ture of our model. The performances on CMU-Mocap and
MuPoTS-3D datasets would be further improved if tuning
some hyperparameters.



Figure B8. Qualitative results of actions A1 – A2 on the common action split. Dark red/blue represents the prediction results, while light
red/blue indicates the ground truths.



Figure B9. Qualitative results of actions A3 – A4 on the common action split. Dark red/blue represents the prediction results, while light
red/blue indicates the ground truths.



Figure B10. Qualitative results of actions A5 – A6 on the common action split. Dark red/blue represents the prediction results, while light
red/blue indicates the ground truths.



Figure B11. Qualitative results of action A7 on the common action split. Dark red/blue represents the prediction results, while light
red/blue indicates the ground truths.


