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Pansharpening

Supplementary Material

Overview

All source code will be made publicly available for fur-
ther research.
In this supplementary material, we present more details

about our study, including:

e Sec. | provides the mathematical model of UED-Net
based on C-SALSA solver.

* Sec. 2 delves into the our configuration of UED-Net to
reproduce the experimental results presented in this paper.

* Sec. 3 contains additional comparisons with state-of-the-
art (SOTA) methods.

¢ Sec. 4 discusses more extensive ablation studies, which
include the effects of the number of stages (Sec. 4.1) and
different cross-stage interactions (Sec. 4.2).

1. C-SALSA for UED-Net

1.1. Model Formulation

We design the architecture of UED-Net based on the
C-SALSA solver, which effectively decouples mixed
constraints to optimize the high-resolution multispectral
(HRMS) image processing. To reiterate the description in
the main paper, the recovery of H from L and P is mod-
eled using the mathematical formula of the deep unfolding
network in UED-Net as follows:
H € argmin || Fge(H) — L[ 4 |Fs.(H, L)|
H (D
| Fea(H) — Pl[ 4 [Fsa(H, P)],
where || * || term represents the global degradation-aware
fidelity component constrained by the ¢5-norm, reflecting
the HRMS image’s global perception of spatial and spectral
modalities, while, the | | term, constrained by the ¢;-norm,
is designed to capture sparse multi-scale prior information.
Together, these terms jointly capture comprehensive degra-
dation patterns perceived from the LRMS and PAN images,
whose specific forms of these terms are defined in Eq. (13)
and Eq. (14) of the main paper.

Next, we solve the constrained problem based on the C-
SALSA algorithm. First, by introducing auxiliary variables
Ve, Vse, Vaa,and Vg,, we split the mixed regulariza-
tion terms in Eq. (1). This reformulation leads to a new
constrained optimization problem:

H Earggﬁﬂ IVaell + [ Vsel + [IVaall + [Vsals

stVge = Fge(H) — L, Vg, = Fs.(H, L), 2)

Vg = Fga(H) =P, Vs, = Fso(H, P).
Subsequently, we apply the Augmented Lagrangian
(AL) method to incorporate penalty terms into the Eq. (2),

transforming it into the following equivalent iterative opti-
mization problem:
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where k € {0,1,..., N} and N denotes the maximum num-
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ber of iterations. W(Ge), W(sz, W(Se), andW(Sa) are the La-

grange multipliers, which store the residuals between hier-

archical iterative features and are updated in the k" iteration
through the following equation:
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where (f((;k(,l)7 fgf,))/ (fgi), f gz ) represent the feature repre-

sentations of the spectral/spatial modalities of the global
degradation-aware fidelity and sparse multi-scale prior at
the k™ stage. Similarly, their specific formulations can be
found in Eq. (13) and (14) of the main paper.

1.2. Model Solution

Direct solving Eq. (3) is challenging due to insepara-
ble quadratic terms and non-smooth components. To ad-
dress this, we decouple the mixed constraints, enabling
us to minimize three sub-problems alternately, which in-

clude the fidelity terms (V(Gk e), V(Cif 3), the sparse prior terms
(VP v and their integration into H().

Update of (V(Ske),V(Sk)): We separate the sparse multi-
scale prior terms from Eq. (3), formulating it as a Lasso
problem expressed as follows:
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To solve this problem effectively and promote sparsity
in multi-scale features, we employ the soft-thresholding
shrinkage [3] method:

V) <. 1)+ W), ©
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where €. and €, are randomly initialized and stage-wise
learnable parameters, which control the sparsity enforced



by shrinkage to reduce noise introduced by multi-scale sam-
pling and enhance the representation of multi-scale details.
For any ¢, the S, (x) is defined as:

Se(*) = sgn(*) - max(| * | — ¢,0). @)

Update of (ng 2 , Vg 3) Similarly, we decouple the
global degradation-aware data fidelity terms from Eq. (3),
which are formulated with ¢5 constraints, encourage smooth
degradation representation:
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Ga,

The approximate solutions for Vg:e) and Vgﬁ corre-

spond to orthogonal projections onto an /5 ball of suffi-
ciently small radius [1], expressed as:
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In the DUN context, we apply learnable normalization to
enhance the generalization of this process:

VE = VETY 4 oNi(Fo H* D, L) + W),
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where GN; represents the normalization with the number of
groups being 1.

Updata of H*):  We regard updated auxiliary variables as
constants and decouple the data terms about H from Eq. (3),
establishing H(*):

H®) € arg min| o (H?Y) ~ P — v _wd)
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The Egs. (5) to (10) in UED-Net is outlined as encoding
the degraded pattern, while Eq. (11) can be solved using
a gradient descent, which is summarized as the following
decoding.

We first further combine the spatially and spectrally
degradation-aware auxiliary variables to obtain the feature
representations of the degradation pattern at this stage, fg(pg
and fﬁp()l, as described in Eq. (19) and (4) of the main paper.

Next, we employ PGAM to calibrate the spatial offsets
of f§§2 and f§]’§21, regulating the spatial/spectral distributions
at this stage to obtain the f,gf,)n, as detailed in Eq. (5)-(8) of
the main paper.

Furthermore, we utilize the customized UAAM to cap-
ture cross-stage feature interactions, mitigating noise accu-
mulation across stages to obtain the fs(k) , as described in Eq.
).

Finally, we adaptively perceive the iteration step size and
the gradient descent feature representation VH*~1) using
Eq. (10)-(12) of the main paper, and reconstruct the HRMS
at the k" stage using the following general gradient descent
formulation:

HF) =HF-D L vEE-D, (12)

2. More Model Reproducible Details

Table 1. Training parameters and model configuration.

Configurations ‘ Default Settings
Base Learning Rate 5x 107
Min Learning Rate 5x 1078
Optimizer ADAM
Weight Decay 0
Optimizer Momentum 0.9,0.999
Batch Size 4
Training Epochs <1000
Learning Rate Schedule Cosineannealing
Number of Head (T) 4
Number of Stages (V) 7
Hidden Layer Dimensions (.5) 16
Convolution Initialization Kaiming
/17&) sedl,...,S} 8~(%)1'35—5
pgl),se{l,...,S} log(0.3)+M2%371)
(VE?)7W<O> ii € {Ge,Ga, Se, Sa} Zero Matrix
Other Learnable Parameters torch.randn
Implementation PyTorch 2.5.1
CPU Intel i5-10600KF
GPU NVIDIA GeForce RTX 4090

We use UED-Net with 7 reconstruction stages (N = 7)
and 16 hidden layers (S = 16) as the default model, which
is derived from the ablation study on the number of stages
in Sec. 4. UED-Net upscales the LRMS using bicubic inter-
polation to initialize H(®). Additionally, the learnable aux-
iliary parameters in the UAAM are initialized as described
in the RWKYV [10]. The auxiliary iterative variables in the
SSEM are initialized as zero matrices. Other learnable pa-
rameters are initialized with random values from a normal
distribution within the range [0, 1]. We summarize the key
training parameters and model configurations in Tab. | for
a better understanding of our approach.

Based on this experimental configuration, the default
UED-Net requires approximately 35 milliseconds for infer-
ence on a multispectral image with 4 bands and a spatial
size of 128 x 128.

The supplementary materials include source code and
detailed experimental settings required to replicate the find-
ings outlined in this paper. Additionally, the source code
will be made publicly available to enhance accessibility and
promote reproducibility.



Table 2. Comparison of UED-Net with other methods in simulated tests on reduced-resolution data, with the best result highlighted in bold

red and the second best result highlighted in blue.

Dataset | WorldView-11 | WorldView-I1T | GaoFen-2 |
Metrics |ERGAS| SSIM{ PSNRf SCCT SAMJ|ERGAS| SSIM{ PSNRf SCC SAMJ|ERGAS| SSIM{ PSNRT SCCt SAMY|Flops (G) Params (M)

GSA  (orson) | 1.6064 0.9266 36.9802 0.4552 0.0373| 9.1864 0.5335 21.8331 0.6187 0.1310| 1.7981 0.8855 36.5014 0.1284 0.0345| - -
SFIM  @rson | 1.9651 09147 35.8461 0.4534 0.0397| 8.7638 0.5483 22.1521 0.6697 0.1243| 1.5923 0.8964 37.6654 0.1697 0.0292| - .
Wavelet aGarsson| 2.0528 0.8765 35.1764 03641 0.0484| 9.4045 0.5002 21.6659 0.0493 0.1371| 2.0188 0.8189 35.8537 0.0243 0.0280| - .
SHIP++ (teamr2s) | 0.9035 0.9727 423276 0.5893 0.0212| 3.0152 0.9265 30.8038 0.8309 0.0725| 0.4872 0.9900 48.3720 0.5616 0.0094| 2.9012  0.1783
SFINet++ (Tpamr2s) | 0.9538 0.9675 41.5874 0.5147 0.0236| 3.0217 0.9261 30.7665 0.8333 0.0720| 0.4376 0.9906 49.3578 0.5897 0.0087| 0.7742  0.0487
HFINet (cver24) | 0.9906 0.9694 41.9026 0.5697 0.0226| 3.1523 0.9192 30.4808 0.8156 0.0766| 0.4907 0.9891 48.3114 0.5583 0.0090| 1.0104  0.0773
WINet  (Tors24) | 0.9024 0.9714 42.0479 0.5753 0.0226| 3.1753 0.9187 30.3268 0.8205 0.0802| 0.4472 0.9904 49.1070 0.5630 0.0090| 1.9597  0.3336
CANNet (cver24) | 0.9094 0.9721 41.9689 0.5800 0.0222| 3.0980 0.9225 30.5497 0.8233 0.0768| 0.4893 0.9902 48.3435 0.5623 0.0094| - .
LFormer oav24) | 0.8510 0.9730 42.5194 0.5954 0.0226| 3.0694 0.9255 30.9709 0.8282 0.0735| 0.4551 0.9898 48.9494 0.5619 0.0094| 7.8588  0.4494
RECONet (rors24) | 1.0992 0.9663 40.3569 0.5285 0.0233| 3.3407 0.9153 29.9527 0.8134 0.0799| 0.7378 0.9839 44.4392 0.4492 0.0102| 4.0509  5.2089
PDDNet accv2s) | 0.9889 0.9702 413745 0.5819 0.0240| 33839 0.9088 29.8436 0.8095 0.0852| 0.5098 0.9892 48.9465 0.5440 0.0102| 0.1284  0.0395
INNF  @aarz) | 09176 09706 41.8949 0.5756 0.0222| 3.1000 0.9216 30.5419 0.8250 0.0745| 0.4831 0.9894 48.5199 0.5664 0.0095| 1.2201  0.0613
DISPNet (aaAr24) | 0.8759 0.9720 42.2527 0.5837 0.0215| 3.0096 0.9267 30.8352 0.8315 0.0720| 0.4493 0.9904 49.0900 0.5679 0.0097| 27.667  1.5669
NLUNet (rors'23 | 1.0034 0.9644 41.0635 0.5413 0.0246| 3.2981 0.9140 29.9715 0.8162 0.0811| 0.4976 0.9885 48.2287 0.5458 0.0099| 4.6099  0.3062
LGTEUN mcarzs) | 0.8968 0.9734 42.6766 0.5832 0.0211| 3.0151 0.9246 30.7884 0.8291 0.0723| 0.4798 0.9894 48.5291 0.5728 0.0097| 32113  0.3004
MMNet  Eceviay | 09600 09710 41.5033 0.5703 0.0220| 3.2175 09171 30.3537 0.8217 0.0778| 0.6377 0.9859 45.4227 0.4801 0.0160| 4.5953  0.0703
MDCUN cver22) | 1.0060 0.9635 41.1297 0.5274 0.0249| 33531 09111 29.8336 0.8142 0.0828| 0.4830 0.9890 48.4141 0.5461 0.0098| 118.30  0.1538
GPPNN  (cver21) | 0.9248 0.9702 41.8381 0.5807 0.0222| 3.0923 0.9226 30.5770 0.8290 0.0738| 0.4812 0.9893 48.4958 0.5596 0.0096| 4.1901  0.3594
UED-Net petult st | 0.8349  0.9739 42.7251 0.5977 0.0203| 2.8918 0.9290 31.1564 0.8370 0.0675| 0.4268 0.9910 49.5648 0.5986 0.0077| 2.5097  0.1682
UED-Net oursstg | 0.8349 0.9740 42.7211 0.5914 0.0202| 2.9021 0.9292 31.1272 0.8363 0.0686| 0.4282 0.9910 49.5254 0.5991 0.0082| 32268  0.2163
UED-Net ours(t1stg) | 0.8350  0.9740 42.7172 0.5960 0.0203| 2.8987 0.9292 31.1380 0.8365 0.0682| 0.4277 0.9910 49.5032 0.5994 0.0085| 3.9439  0.2643
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Figure 1. Visual comparison of UED-Net with other methods in simulated tests on GaoFen-2.
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3. More Comparisons with SOTA Methods

In the main body of this paper, we compare the pro-
posed UED-Net with various representative pansharpening
methods, which are configured according to the best set-
tings reported in their respective papers, including (SHIP-
Net++ [20], CANNet [4], SFINet++ [19], HFINet [12],
WINet [17], PDDNet [5], INNF [18], LFormer [6], and RF-
CONet [11]), (MMNet [15], DISPNet [13], NLUNet [8],
LGTEUN [8], MDCUN [16], and GPPNN [14]). In this
subsection, we further highlight the significant advantages
of UED-Net over these methods and provide a compari-
son with traditional methods (GSA [2], SFIM [9], Wavelet
[7]). Additionally, we present a performance compari-
son of UED-Net under different representative configura-
tions. In Tab. 2, we present the results of the further sim-

ulation tests, with the best, and second-best performances
marked in red, and blue, respectively. The various configu-
rations of UED-Net show significant performance improve-
ments across three datasets. Specifically, on the GaoFen-
2 dataset, UED-Net achieves a 0.2048 dB improvement in
PSNR over the second-best algorithm, SFINet++; on the
WorldView-II dataset, it outperforms the second-best al-
gorithm, LGTEUN, by 0.0486 dB in PSNR; and on the
WorldView-III dataset, UED-Net shows a 1.1849 dB im-
provement in PSNR compared to the second-best algorithm,
DISPNet. These results indicate that our proposed method
is not dataset-dependent and demonstrates reliable scalabil-
ity generalization capability.

Furthermore, we present supplementary results on real
test in Tab. 3, where our default UED-Net configuration



Table 3. Comparison of UED-Net with other methods in real tests on GaoFen-2 full-resolution data.

‘ Traditional Methods ‘ Pure DL-Based Methods

‘ Deep Unfolding Methods

Metrics

‘ GSA SFIM Wavelel‘SHIPH— SFINet++ HFINet WINet CANNet LFormer RECONet PDDNet INNF ‘DISPNet NLUNet LGTEUN MMNet MDCUN GPPNN‘UEDfNel

0.17344 0.16949 0.33271
0.44336 0.30266 0.40957
0.46010 0.57915 0.39399

Dyl
Dy
QNR?

0.07208 0.07836 0.09837 0.11871 0.07476 0.08352 0.25559 0.07984 0.07080|0.08068 0.07628 0.11336 0.07182 0.07649 0.09124| 0.06801
0.09838 0.08855 0.08491 0.08273 0.09752 0.08593 0.13758 0.10634 0.10758|0.08224 0.10741 0.17165 0.17053 0.08860 0.09485| 0.07011
0.84930 0.84003 0.82506 0.80838 0.83502 0.83773 0.64309 0.82231 0.82923|0.84371 0.82450 0.73445 0.76990 0.84168 0.82257| 0.86665

Table 4. Ablation of the stage number.

Table 5. Ablation of cross-stage feature interactions.

Num of Stage | 3 5 7 (Defult) 9 11 13

SSIMt 0.9906  0.9907 0.9910 0.9910 0.9910 0.9910
PSNR?T 49.3232 49.3721 49.5648 49.5254 49.5032 49.5121
QNR? 0.7756  0.8083 0.8666 0.8645 0.8639 0.8652

FLOPs 1.0756  1.7927 25097  3.2268 3.9439  4.6609
Params 0.0721  0.1202  0.1682  0.2163 0.2643  0.3124

continues to exhibit superior performance, particularly in
terms of QNR metrics and maintaining a balanced hardware
load. Additionally, compared to DUN-based methods, our
method incurs the lowest computational cost.

Finally, we include a visual comparison on the GaoFen-
2 dataset for simulated tests,as shown in Fig. 1, highlight-
ing both the reconstruction details and visualizations of
the mean squared error (MSE). Notably, the comparisons
further confirm that our method outperforms other algo-
rithms across multiple scenarios, while offering a compet-
itive performance-to-computation-cost ratio comparable to
pure deep learning methods. This validates our hypothesis
on the importance of effective cross-modal and cross-stage
interactions at different abstraction levels in successful pan-
sharpening.

4. More Ablation Studies
4.1. Number of Stages

We conduct an ablation study on the GaoFen-2 dataset to
investigate how the performance of UED-Net varies with
computational cost. As shown in Fig. 1 of main papet and
Tab. 4, performance improves as we increase the number
of stages. We observe that both performance and cost in-
crease significantly with the number of stages. At 7 iter-
ations, we achieve an impressive PSNR of 49.5648 dB in
simulated tests and the highest QNR in real tests. After
this point, the performance continues to improve slightly
in simulated tests but shows some fluctuation. Additionally,
we present the results for 9 and 11 stages in WorldView-11
and WorldView-III tests, as shown in Tab. 2. Based on the
performance-cost trade-off, we use 7 iterations stages as the
default configuration for UED-Net.

4.2. Cross-stage feature interactions

Building on the ablation study of the UAAM presented in
Sec. 4.2 of main paper, we further investigate the benefits of

Real Tests ‘
‘Calculate Costs

‘ Simulated Tests ‘

Method| (GaoFen-2) (WorldView-) | (GaoFen-2)

‘ERGASL SSIM{ PSNRT ERGAS| SSIM? PSNRT‘ Dyl D.| QNR T‘FOLPS Params

Netl | 0.4616 0.9896 48.8597 0.8825 0.9718 42.2939/0.0680 0.0768 0.8604 |1.5051 0.1065
Net2 | 0.4462 0.9901 49.1483 0.8623 0.9721 42.4275(0.9791 0.0100 0.8359 |6.7954 0.4294
Net3 | 0.4443 0.9902 49.2000 0.8593 0.9723 42.4554(0.0797 0.1522 0.7802 |3.6190 0.2364
Defult | 0.4268 0.9910 49.5648 0.8349 0.9739 42.7251/0.0680 0.0701 0.8666 [2.5097 0.1682

associative attention as a cross-stage interaction mechanism
within our proposed UAAM by substituting it with various
cross-stage interaction methods. Specifically, Netl serves
as a baseline network without any cross-stage interaction.
For Net2, we implement the method proposed in MDCUN
[16], which utilizes stacked intermediate variables. For
Net3, we employ the LSTM-like stage interaction method
outlined in MMNet [15]. As demonstrated in Tab. 5, our
method outperforms Netl, Net2, and Net3 across all eval-
uation metrics, not only in the simulated tests of GaoFen-2
and WorldView-II but also in real tests, while maintaining
superior computational efficiency.
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