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I. Supplementary Material
This Supplementary document is organized as follows:
• A.1 Reproducibility Statement
• A.2 Implementation Details
• A.3 Model Details
• A.4 Extended Ablations
• A.5 HERMES vs. MA-LMM vs. MovieChat
• A.6 A Note on Latency
• A.7 More Qualitative Results
• A.8 Error Analysis: When does HERMES fail and why?
• A.9 How is our approach related to cognitive processes?

I.1. Reproducibility Statement
To facilitate the reproducibility of our work, we will make
our code, pretrained models, default hyperparameters, and
preprocessed annotations publicly available. Detailed hy-
perparameters for each dataset are also provided in Table 9.
Our model demonstrates efficient performance, completing
inference on the MovieChat-1k test set in 13 minutes (22
FPS) using a single V100 GPU (32 GB), and training on the
MovieChat-1k dataset in less than 12 minutes with 8x 32
GB GPUs. In contrast to recent LLM-based approaches that
necessitate extensive and costly multi-stage pretraining on
increasingly large datasets, our model is designed for acces-
sibility, thereby lowering the barrier for researchers without
access to high-end computing resources. We achieve high
performance while maintaining accessibility by leveraging
existing pretrained weights and implementing our training-
free ECO and SeTR, resulting in a model where finetuning is
optional. We also demonstrate the applicability of our mod-
ules to existing video models, and are planning to submit
pull requests to integrate our modules into these models.

For fully-supervised results, QFormers and adapter are
fine-tuned on the respective dataset’s training split. For plug-
in experiments, ECO and SeTR are inserted into target ar-
chitectures at inference time, with zero additional training,
demonstrating true plug-and-play capability.

I.2. Implementation Details
To ensure the reproducibility of our results, we provide train-
ing and inference details in Table 9. These settings are
mostly consistent across different datasets. In the table, LR
is the learning rate, and Keep Ratio is the SeTR keep ra-
tio. Episodes refer to the number of episodes to which we
compress the input frames (i.e., the capacity of ECO). The
number of frames (N) represents the quantity of frames re-
tained from the original video to serve as input to the model.

These frames are selected by applying a regular stride over
the original video’s frame sequence, where the stride length
is determined by the ratio of original frame count to N. Max
Epoch = 20 means we run the program for 20 epochs, per-
forming evaluation after each epoch, and then pick the model
with the highest validation accuracy. MovieChat-1k (G) and
MovieChat-1k (B) denote global and breakpoint modes, re-
spectively. All models were trained on 8 V100 GPUs (32GB
VRAM each). We test on VideoMME using the zero-shot
setting by applying our modules to two different models, the
same parameters were used across models for consistency.

I.3. Model Details
I.3.1. Details of our Episodic QFormer
The Episodic Q-Former, as visualized in Figure 7, extends
the original QFormer architecture by inserting the Episodic
COmpressor (ECO) described in Section 4.2. It begins with
a set of initial queries that undergo a self-attention process,
enhancing internal query representations. These queries
then interact with episodic visual features through cross-
attention, allowing the incorporation of contextual visual
information. The resulting enhanced queries are fed into our
ECO module alongside existing query episodes, which rep-
resent previously processed queries grouped into episodes.
ECO iteratively updates the query episodes, adding the new
queries to the existing episodes. This Episodic QFormer
allows the model to better handle long sequences or repeated
queries by maintaining richer contextual knowledge across
iterations.

To mitigate temporal confusion during merging, we apply
positional encoding (PE) to frame features before ECO. This
effectively discourages out-of-order merges by embedding
temporal locality directly into similarity calculations. As an
ablation, removing PE reduces MovieChat-1k accuracy
from 78.6 to 77.3 on MovieChat-1k, indicating its effective-
ness in preserving temporal coherence despite compression.
Other studies such as Transformer-XL [8] and Compressive
Transformer [28], also report performance drops when posi-
tional biases are removed from their compression modules.

ECO implicitly captures event frequency: frequent
events naturally occur across multiple frames and thus
have higher likelihoods of being retained or merged into
reinforced prototypes within the memory bank. This self-
reinforcing mechanism ensures high-importance (and often
high-frequency) events remain well-represented. Explicit
event frequency tracking is an idea worth exploring, how-
ever, we believe it would be more computationally intensive



Dataset Max Epochs LR Batch Frames (N) Episodes Keep Ratio
MovieChat-1k (G) 1 1e-4 32 100 20 0.2
MovieChat-1k (B) 1 1e-4 32 40 10 0.5
LVU 20 1e-4 32 100 20 0.2
COIN 20 1e-4 32 100 20 0.2
Breakfast 20 1e-4 32 100 20 0.2
VideoMME (LongVA) - - 1 128 32 0.125
VideoMME (Llava-OV) - - 1 128 32 0.125

Table 9. Hyperparameters used for different datasets.
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Figure 7. Illustration of our Episodic QFormer: We insert
our ECO in the original QFormer to effectively and efficiently
compute and aggregate queries across long video sequences. It
returns query episodes representing the whole video.
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Figure 8. Illustration of SeTR: Our Semantics reTRiever uses
a stride of k split the videos into groups X of N/k frames and
Y of N � N

k frames, then merge each frame from Y to its most
semantically similar in X .

and may force important but infrequent representations out
of memory.

I.3.2. Details of SeTR

We design SeTR as an efficient tool to retrieve semantic
information from a long video. Given tokens extracted from
a long video sequence, we use a stride of size k, to form a
group of N

k frames representing the number of semantics
we want to extract. We then compress the remaining N �
N
k frames into extracted N

k frames to obtain the semantic
representations. SeTR is illustrated in Figure 8.

I.4. Extended Ablations

I.4.1. How does the number of frames affect the model’s
accuracy and latency?

MovieChat [32] processes 2048 frames for each video, while
we use only 100 frames, as previous studies have demon-
strated how redundant video data is [31, 42]. Given that
the MovieChat-1k dataset contains very long videos (some
exceeding 14,000 frames), we conducted experiments to ex-
tend the number of frames our model processes. Specifically,
we experiment with 40, 80, 100, 300, 500, and 1000 frames
while keeping the number of episodes constant. As for the
SeTR keep ratio, we decrease it in function of the number
frames so that the number of semantic features we keep
equals 20.

We observe a complex relationship between model accu-



Figure 9. Accuracy and latency as functions of the num-
ber of frames processed: This figure demonstrates the
non-monotonic relationship between accuracy and frame
count, with peak performance at 80 frames. Latency in-
creases super-linearly with frame count while accuracy
stalls, highlighting the redundancy of video data.

Figure 10. Accuracy and latency as functions of input
window size: The graph illustrates the interplay between
model accuracy, processing latency, and the window size.
Notably, accuracy peaks at a window size of 10, while
latency stabilizes for window sizes of 10 and above. In all
cases the accuracy only slightly fluctuates.

racy, processing latency, and the number of frames analyzed.
Figure 9 illustrates these relationships, providing insights
into the performance trade-offs of our model. As evident
from Figure 9, the relationship between accuracy and the
number of frames is non-monotonic. Accuracy initially in-
creases as the number of frames grows, reaching a peak of
79.4% at 80 frames with a modest latency (note that we use
100 frames as the default parameter in other experiments
for consistency with other datasets). This suggests that up
to this point, additional frames provide valuable context
that enhances the model’s understanding. However, beyond
80 frames, we observe a decline in accuracy, possibly due
to the introduction of noise or irrelevant information from
temporally distant parts of the video.

Latency, on the other hand, exhibits a near-linear increase
with the number of frames up to 300 frames, after which
it grows super-linearly. This rapid increase in latency for
higher frame counts underscores the computational chal-
lenges of processing large numbers of frames, particularly
in real-time or near-real-time applications.

Interestingly, the model’s performance at 1000 frames
(76.7% accuracy) is lower than its performance at 40 frames
(77.6% accuracy), but with a significantly higher latency
(2676s vs. 143s). This observation highlights the diminish-
ing returns and potential drawbacks of simply increasing the
number of processed frames. It also underscores the impor-
tance of thoughtful frame selection in video understanding
tasks. Future work could explore adaptive frame selection
techniques that dynamically adjust the number of frames
based on video content, potentially optimizing both accuracy
and efficiency.

I.4.2. How does the window size affect the model’s accu-
racy and latency?

Our analysis of our model’s zero-shot performance on the
MovieChat-1k test set reveals intriguing relationships be-
tween accuracy, latency, and input window size. Figure
10 illustrates these trade-offs. As evident from Figure 10,
the relationship between accuracy and window size is non-
monotonic. Accuracy initially increases with window size,
reaching a peak of 78.6% at a window size of 10. This sug-
gests that providing more context to the model improves its
performance up to a certain point. However, beyond this
optimal window size, accuracy begins to decline, possibly
due to the introduction of irrelevant context.

Latency exhibits a sharp decrease from window size 1
to 5, after which it remains relatively stable. This indicates
that while smaller window sizes may seem computationally
advantageous, they incur higher latency, possibly due to the
need for more frequent ECO call. The optimal trade-off oc-
curs at a window size of 10, where we observe peak accuracy
and stabilized latency suggesting that carefully tuned con-
text windows can enhance long-form video understanding
without incurring additional computational costs.

I.5. HERMES vs. MA-LMM vs. MovieChat
HERMES versus MA-LMM: For each incoming frame,
MA-LMM adds it to the memory bank by computing the
similarities with adjacent frames and merging the incoming
frame with its most similar in the memory bank. Below are
our main differences.
• HERMES takes a distributed approach. Our ECO, dis-

tributes the frames of the incoming window to the most
appropriate episode. This approach is more intuitive and
better mirrors human memory formation.



• Frames can be grouped into episodes regardless of tem-
poral adjacency, unlike MA-LMM which only considers
adjacent frames. This naturally handles scene transitions,
flashbacks, and non-linear narratives.

• HERMES is vastly more efficient and accurate. As shown
in Table 5 in the main paper, our memory management
system almost halves the inference time (-43%) when
plugged into MA-LMM while being 3.4% more accurate.

• HERMES also captures semantics. Our Semantics Re-
triever (SeTR) complements the episodic memory and is
shown in Table 5 to increase the accuracy of MA-LMM
by almost 4% with only a negligible increase in latency.

HERMES versus MovieChat: Moviechat’s short-term
memory uses a FIFO mechanism. Its long-term memory
uses ToMe. Below are the main differences
• HERMES has episodes instead of short-term memory, and

our update approach is based on similarity to a certain
existing episode instead of FIFO. As shown in Table 6 of
the paper, FIFO’s performance is inferior to ECO.

• HERMES’s long-term memory is implicitly encoded in
ECO. We consider SeTR as a semantics scanner that re-
trieves scattered semantics from the video.

• 22 FPS processing speed compared to MovieChat’s 0.01
FPS (13 minutes vs 1 day on MovieChat-1k) using a V100
GPU (32 GB).

• HERMES achieves high performance with only 100
frames compared to MovieChat’s 2048 frames.

I.6. A Note on Latency
The MovieChat-1k test set comprises 170 videos, from each
of which our model samples 100 frames. This results in
a total of 17,000 frames to be processed. Our empirical
measurements show that the model requires 774 seconds to
complete end-to-end inference on this dataset using a single
V100 GPUs (32GB VRAM). This translates to a processing
speed of approximately 22 frames per second (FPS), which
is very close to real-time performance. Such a result suggests
that our approach is not only effective in terms of accuracy
but also efficient enough for practical applications in video
understanding tasks.

I.7. Qualitative Results
Animal Identification. Figure 11a demonstrates our
model’s superior performance in animal identification com-
pared to MovieChat. In this example, MovieChat incorrectly
identifies a leopard as a cheetah, despite no cheetah being
present in the video. This misidentification underscores the
importance of accurate visual feature extraction and seman-
tic understanding in long-form video analysis.
Animal Counting. Figure 11b showcases our model’s ability
to perform complex counting tasks, even with limited infor-
mation. The task involves counting baby bears, which appear
infrequently in the video. Despite analyzing only 100 frames

compared to MovieChat’s 2048 frames, our model accurately
locates and counts the baby bears. This demonstrates the
efficiency of our ECO and SeTR modules in capturing and
retaining crucial information from sparse appearances.
Determining People’s Relationships. In Figure 11c, we
compare our model’s performance against MA-LMM in
determining relationships between people over extended
video sequences. Both models were trained on the LVU
dataset. Our model’s superior performance in this task can
be attributed to the episodic memory compression technique,
which allows for better retention and analysis of interactions
across thousands of frames.

I.7.1. Visualization of ECO and SeTR
Figure 12 demonstrates the inner-workings of ECO and
SeTR. The top row illustrates a curated summary of the
video content, highlighting diverse scenes, such as land-
scapes, wildlife, and environmental features.

SeTR is responsible for extracting high-level semantic
features and grouping frames with similar themes, as shown
in the mid row. For instance, the module effectively captures
thematic clusters such as “Landscape,” “Various Birds,” and
“Reptiles,” providing a concise overview of the video.

Meanwhile, ECO processes the video at a more granular
level, segmenting it into coherent episodes that reflect the
narrative flow. The bottom row showcases this segmenta-
tion, organizing the content into episodic units like “Arid
Landscape,” “Lake and Aquatic Bird,” and “Flies.” This two-
tiered approach ensures both thematic abstraction and tem-
poral coherence, enabling a comprehensive understanding
of the video.

I.8. Error Analysis: When does HERMES fail and
why?

Our model, while generally effective, demonstrates several
notable failure cases that warrant further investigation and
improvement. Figure 13 illustrates examples where the
model’s predictions deviate from ground truth answers, re-
vealing key limitations in contextual reasoning and temporal
information integration. Figure 13 presents two sets of video
frame sequences that highlight shortcomings in our model’s
performance. In the top row, we observe a documentary on
marine life. Despite clear visual cues of underwater scenes
and diving equipment, the model incorrectly predicts that
no one got underwater. The bottom row showcases a more
complex scenario from a wildlife documentary. Here, the
model exhibits multiple errors: It underestimates the number
of cheetahs involved in the hunt, predicting only one when
at least three are present. This indicates a weakness in quan-
titative reasoning across temporally distributed information.
The model incorrectly predicts that the cheetah’s hunt was
unsuccessful, contradicting the visual evidence. This error
points to difficulties in inferring outcomes from sequences
of events. Lastly, the model fails to recognize the fate of



(a) Animal Identification: MovieChat mistakenly identifies a Leopard as a Cheetah, even though no Cheetah appears in the video.
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(b) Animal Counting: This question is particularly challenging because the bears appear infrequently in the video, and the question specifically asks about
“baby bears.” Despite MovieChat analyzing 2048 frames and our model only analyzing 100 frames, our model was able to locate and count the baby bears
accurately.

(c) Determining People’s Relationships: We compare our results with those of MA-LMM, with both models trained on the LVU dataset. Thanks to our
episodic memory compression, our model excels at determining people’s relationships across thousands of frames of interactions.

Figure 11. Qualitative results demonstrating the capabilities of our model compared to MovieChat and MA-LMM across different tasks. (a)
Animal identification shows MovieChat’s confusion between Leopard and Cheetah. (b) Animal counting highlights the challenge of locating
baby bears with limited appearances in the video, where our model outperforms despite fewer frames. (c) Relationship determination
benefits from our episodic memory compression, enabling better identification of relationships over extended interactions.

a dead baby giraffe, predicting “nothing” when the correct
answer is “eaten by hyenas”.

These examples emphasize the need for improved mech-
anisms to aggregate and reason over long-range temporal
dependencies, as well as enhanced capabilities in scene un-
derstanding and event inference.

I.9. How is our approach related to cognitive pro-
cesses?

Our approach to long-form video understanding is inspired
by cognitive processes involving memory and comprehen-
sion. According to the literature on neuroscience [30, 38, 39],
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Figure 12. Visualization of ECO and SeTR: The top row presents a curated visual summary of the video, showcasing key scenes such as
landscapes, wildlife, and environmental features. The middle row highlights the functionality of SeTR, which extracts semantic features
and clusters frames into thematic groups, including “Landscape,” “Various Birds,” and “Reptiles.” Finally, the bottom row illustrates the
operation of ECO, which segments the video into coherent narrative episodes, such as “Arid Landscape,” “Lake and Aquatic Bird,” and
“Flies.” Together, these modules provide both high-level abstraction and detailed episodic structure for comprehensive video understanding.

Figure 13. Where and when HERMES fail: The top row shows a marine life video where the model fails to recognize underwater scenes.
The bottom row depicts a wildlife documentary where the model struggles with quantitative reasoning and event inference across multiple
frames. These cases highlight limitations in contextual understanding and temporal information integration.



human cognition involves two primary types of memory:
episodic and semantic. Episodic memory is the ability to
recall specific events or episodes, while semantic memory
refers to the storage of general knowledge and concepts.
These forms of memory are crucial for understanding long-
form narratives, where a coherent understanding arises from
the integration of specific events and overarching themes.

The proposed HERMES model incorporates these cogni-
tive processes through its two main components, ECO and
SeTR. ECO, akin to the function of episodic memory, se-
lectively retains and compresses key events from the video,
allowing the model to form a structured representation of
the narrative as it unfolds. This approach is an oversimpli-
fied abstraction of findings in cognitive neuroscience, which
highlight the role of the hippocampus in the consolidation of
episodic memories [9, 30], and the concept of subjective time
[1] that sees a scene (or a video) not as a series of frames
but as a series of experiences. The hippocampus enables the
organization of temporally distinct experiences into a coher-
ent memory trace, something that we aim to capture with
ECO. Moreover, the sequential processing and aggregation
of information in our model align with the concept of event
segmentation in cognitive psychology [47]. Humans natu-
rally segment continuous experiences into discrete events,
which aids in memory formation and recall.

Meanwhile, SeTR functions similarly to semantic mem-
ory, extracting and reinforcing high-level semantic cues.
This process mirrors how the brain integrates detailed
episodic memories with broader semantic knowledge stored
in the neocortex [2, 23]. Also related is the concept of gist ex-
traction which involves rapidly comprehending the essence
or overall meaning of a scene or situation [26]. This abil-
ity allows humans to quickly understand the context of a
complex scene without processing every detail. Our SeTR
operates similarly by identifying and extracting high-level
semantic cues that provide a concise overview of the scene
and actions.

The integration of these cognitive processes not only
aligns with human-like comprehension but also offers a
framework for efficiently handling the vast and diverse in-
formation present in long-form videos. Significant improve-
ments over existing state-of-the-art models, underscore the
effectiveness of this cognition-inspired approach. While our
model is a oversimplified abstraction of human cognition, it
provides a foundation for exploring more complex cognitive
mechanisms in future work.
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