
SUPERDEC: 3D Scene Decomposition with Superquadric Primitives

Supplementary Material

1. Superquadrics

While our architecture can be easily adapted to segment and
predict in an unsupervised manner other types of geometric
primitives - in SUPERDEC we decided to use superquadrics.
When looking for a suitable geometric primitive for our ap-
proach we were keeping in mind two main criteria. First, we
wanted the primitive to be represented by a compact param-
eterization so that it can be described by only using a few
parameters. Second, we wanted the representation to be ex-
pressive, in order to be able to describe real-world objects
by only using a few primitives. Inspired by 3DGS [18], the
first parameterization we took into consideration were the
ellipsoids. Ellipsoids have a very compact parameterization
as their shape can be represented using the following im-
plicit equation:

f(x) =

✓
x

sx

◆2

+

✓
y

sy

◆2

+

✓
z

sz

◆2

= 1,

where the only free variables are sx, sy , sz , which are the
lengths of the three main semi-axis. However, if we start
thinking about which objects and object parts can be effec-
tively fitted using a single ellipsoid, we realize that their
representational capabilities are not enough. In order to ob-
tain higher representational capabilities while still keeping
a simple representation, a natural extension are generalized

ellipsoids. In this representation, we not only allow the
length of the semi-axis to be variable, but their roundness
controlled by the three exponents, which previously were
fixed to 2. In that way, we obtain the following implicit
function:

f(x) =

✓
|x|
sx

◆e1

+

✓
|y|
sy

◆e2

+

✓
|z|
sz

◆e3

= 1 .

Using generalized ellipsoids with high exponents it be-
comes possible to also represent cuboidal shapes. While
having suitable representational capabilities, these primi-
tives do not allow to compute distance to their surface in
a closed form, a property which can be extremely useful for
various downstream applications. This drawback is over-
come by superquadrics, at the cost of one less degree of
freedom, which however does not substantially impact ex-
pressivity. Unlike generalized ellipsoids, which assign a
separate roundness parameter to each axis, superquadrics
share the same roundness for the x and y axes while al-
lowing a distinct parameter for the z axis. Their shape is

represented in implicit form by the equation:

f(x) =

 ✓
x

sx

◆ 2
✏2

+

✓
y

sy

◆ 2
✏2

! ✏2
✏1

+

✓
z

sz

◆ 2
✏1

= 1 ,

and the euclidean radial distance to their surface can be
computed in closed form, as shown in Eq. 2. In addi-
tion, superquadrics are also equipped with an explicit func-
tion, which can be used to sample points from their sur-
face. Specifically, given the coordinates (⌘, !) such that
⌘ 2

⇥
�⇡

2 ,
⇡

2

⇤
and ! 2 [�⇡, ⇡], the surface of a su-

perquadric can be represented as:

s(⌘, !) =

2

4
sxcos (⌘)✏1 cos (!)✏2

sycos (⌘)✏1 sin (!)✏2

szsin (⌘)✏1

3

5 .

We refer to [16] for additional details on superquadrics.

2. Training Details
In general, we train our model for 500 epochs with �par =
0.1 and then for other 500 epochs with �par = 0.6. For
the results on Replica [45] and ScanNet++ [58] we trained
our model on normalized objects (centered and rescaled to
fit in a sphere of radius 0.5). During training we apply rota-
tion and translation augmentations. Specifically, we apply
random rotations between 0� and 180� around the z axis
and between 0� and 7.5� on the x and y axis. We also ap-
ply random translation with respect to the center in a radius
of 0.05. We optimize our network with Adam [26] a one-
cycle learning rate schedule with a maximum learning rate
of 4e�4. We train on 4 NVIDIA A100 with total batch size
of 128.

3. Additional Results
Does LM improve our final predictions? In our ap-
proach we use LM optimization as a post processing step. In
this experiment (Fig. 11) we want to assess how a different
number of LM optimization rounds affects the final predic-
tions in terms of L2 Chamfer Distance. In order to evaluate
this aspect, we report L2 loss after different numbers of LM
optimization steps, evaluating both in-category and out-of-
category. From this experiment we can notice two main as-
pects. Firstly, we see that it leads to larger improvements in
the out-of-category rather than in the in-category one. This
is probably due to the less accurate initial predictions of our
feedforward model in this setting and it shows that our op-
timization step can be used to decrease the gap between in-
category and out-category. Secondly, we see that even if

1



Figure 11. LM optimization experiment. We show how LM op-
timization improves results in terms of L2 Chamfer distance across
a variable number of rounds. We report results both for in-category
experiments and out-of-category ones.

Method Training Inference L1 # L2 # # Prim.#
SQ - - 3.668 0.279 10

SUPERDEC (Ours) 3 3 1.698 0.047 5.79
SUPERDEC (Ours) 3 7 1.695 0.046 5.82
SUPERDEC (Ours) 7 7 1.711 0.049 5.84

Table 4. Ablation study on existence head. Evaluation on objects
from ShapeNet [4] dataset. The first two columns indicate whether
we use the predicted ↵j at training (left) and inference (right) time.
Scores are scaled by 102.

LM optimization improves our final predictions, it does not
lead to substantial improvements. This suggests that the so-
lutions predicted by our method are located in local minima
and that a diverse type of optimization should be resorted to
improve the predictions further.

Is the existence head needed? As explained in the main
paper, SUPERDEC predicts a set of P superquadrics and
a segmentation matrix. As in many cases less than P su-
perquadrics are in fact needed to represent the input point
cloud, we also predict an existence parameter (↵j) for each
of them, which allows us to model a variable number of
primitives. However, the existence of a superquadric can
also be directly deducted from the segmentation matrix, by
computing ↵̂j . We made some experiments to assess the
impact of using either ↵j or ↵̂j , both at training and at in-
ference time and reported the results in Tab. 4. In order
to evaluate the impact of the prediction head, we conducted
two additional experiments. In the first experiment, we eval-
uate the model trained as explained in Sec. 3.1. In the sec-
ond experiment, we retrained our model without explicitly
supervising ↵j and using ↵̂j at inference time.

Compactness–Accuracy Trade-off. The hyperparameter
�par controls the trade-off between reconstruction accuracy
and representation compactness (see Eq. 4). We evaluate
this trade-off quantitatively by first training the model with
�par = 0.1 for 500 epochs, followed by fine-tuning for 100
epochs with varying �par values. Fig. 12 shows the im-

0.2 0.4 0.6 0.8
�par

4

6

8

N
u
m

b
er

of
P

ri
m

it
iv

es

0.05

0.06

0.07

0.08

0.09

C
h
am

fe
r

L
2

Figure 12. Compactness vs. reconstruction accuracy tradeoff.
We run experiment for different values of the parsimony weight
�par (x-axis) and we visualize the resulting number of primitives
(y-axis, left) and the L2 Chamfer distance (y-axis, right).

ScanNet++ [58] Replica [45]

Method FPS L1 # L2 # # Prim.# L1 # L2 # # Prim.#
CSA 3 2.91 0.41 11.64 3.68 0.70 9.63

SUPERDEC (Ours) 3 1.70 0.11 5.18 1.79 0.19 6.58
SUPERDEC (Ours) 7 1.74 0.13 5.19 1.81 0.20 6.52

Table 5. Ablation study on sampling technique. Evaluation on
objects from 3D scene datasets [45, 58]. The second column report
whether Farthest Point Sampling (FPS) was used to sample the
input points. Alternatively, points were randomly sampled. Scores
are scaled by 102.

pact of �par on Chamfer distance and the average number
of predicted primitives. By adjusting �par, the model can
smoothly balance compactness and accuracy, allowing for
easy fine-tuning to meet target reconstruction quality. In
our experiments, we use �par = 0.6, which approximately
corresponds to the intersection point of the two curves.

Is FPS needed? To understand whether point clouds need
to be downsampled with Farthest Point Sampling (FPS) or
points can just be randomly sampled, we compare the per-
formances of SUPERDEC on 3D scene datasets using the
two approaches. We observe that the performances do not
degenerate and that random sampling is enough for practi-
cal applications.

4. Qualitative results on scenes
4.1. Replica
In Fig. 13 we visualize the superquadric decompositions for
some scenes from Replica [45]. The instance masks are
predicted using Mask3D [41]. The points not belonging to
any instance are visualized in gray.

4.2. ScanNet++
In Fig. 14 we visualize the superquadric decompositions for
some scenes from ScanNet++ [58]. The instance masks the
ground truth instance masks. The points not belonging to
any instance are visualized in gray.

2



Office 4 Room 0 Room 1 Room 2

Po
in

tC
lo

ud
Su

pe
rq

ua
dr

ic
s

Figure 13. Qualitative Results on Replica [45]. We show results on different scenes from Replica. In the first row we show a rendering of
the input mesh, while on the second row we show the output superquadrics. We visualize different object instances with different colors.

88f265fe25 95748dd597 2a1b555966 0b031f3119

Po
in

tC
lo

ud
Su

pe
rq

ua
dr

ic
s

Figure 14. Qualitative Results on ScanNet++ [58]. We show results on different scenes from ScanNet++. In the first row we show a
rendering of the input mesh, while on the second row we show the output superquadrics. We visualize different object instances with
different colors.

5. Robot Experiment

In this section we introduce the key methods and parame-
ters used in our robot experiments. We also present more
detailed qualitative and quantitative evaluation results.

5.1. Setup
For path planning in both ScanNet++ [58] and real-world
scenarios, we use the Python binding of the Open Motion
Planning Library (OMPL). The state space is defined as a
3D RealVectorStateSpace, with boundaries extracted from

the 3D bounding box of the input point cloud. We employ a
sampling-based planner (RRT*), setting a maximum plan-
ning time of 2 seconds per start-goal pair.
In ScanNet++ scenes, the occupancy grid and voxel grid
are both set to a 10 cm resolution, with voxels generated
from the original point cloud. The collision radius is 25
cm. For dense occupancy grid planning, we enforce an ad-
ditional constraint in the validity checking to ensure that
paths remain within 25 cm of free space, preventing them
from extending outside the scene or penetrating walls. And
the planned occupancy grid path serves as a reference for

3



computing relative path optimality in our evaluation. Start
and goal points are sampled within a 0.4m-0.6m height
range in free space, as most furniture and objects are within
this range. This allows for a fair evaluation of how differ-
ent representations capture collisions for valid path plan-
ning. During evaluation, we further validate paths by in-
terpolating them into 5 cm waypoint intervals. Each way-
point is checked against the occupancy grid to ensure that
its nearest occupied grid is beyond 25 cm and its nearest
free grid is within 25 cm. A path is considered unsuccess-
ful if more than 10% of waypoints fail this check. This
soft constraint accounts for the sampling-based nature of
RRT*, which does not enforce voxel-level validity but in-
stead checks waypoints along the tree structure, leading to
occasional minor violations. In the real-world path plan-
ning, we set the collision radius to 60 cm to approximate
the size of the Boston Dynamics Spot robot. Spot follows
the planned path using its Python API for execution.
For grasping in real-world experiments, we use the
superquadric-library to compute single-hand grasping poses
based on superquadric parameters. The process begins by
identifying the object of interest and its corresponding su-
perquadric decomposition. One of the superquadrics is se-
lected and fed into the grasping estimator. To execute the
grasp, the robot first navigates to the object’s location dur-
ing the planning stage. Then, using its built-in inverse
kinematics planner and controller, the robot moves its end-
effector to the estimated grasping pose for object manipula-
tion.

5.2. Planning Results
In Tab. 6 we report the complete planning results on 15
Scannet++ [58] scenes.

4

https://github.com/robotology/superquadric-lib/tree/master


Method 0a76e06478 0c6c7145ba 0f0191b10b 1a8e0d78c0 1a130d092a
Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem.

Occupancy 0.05 100 1.00 960KB 0.06 100 1.00 667KB 0.06 100 1.00 1031KB 0.05 100 1.00 926KB 0.05 100 1.00 803KB
PointCloud 0.07 86 0.98 18MB 0.09 91 0.99 12MB 0.03 77 0.99 19MB 0.05 91 0.99 18MB 0.05 89 0.98 18MB
Voxels 0.03 100 0.97 91KB 0.03 100 1.00 65KB 0.03 100 0.99 99KB 0.03 100 1.01 91KB 0.03 100 1.09 99KB
Cuboids [37] 0.11 32 0.98 22KB 0.10 18 1.02 19KB 0.14 85 1.03 34KB 0.10 50 1.06 21KB 0.12 79 1.00 27KB
SUPERDEC 0.17 100 0.99 52KB 0.16 100 0.97 48KB 0.17 92 0.94 51KB 0.14 91 0.99 39KB 0.13 100 0.98 35KB

Method 0a76e06478 0b031f3119 0dce89ab21 0e350246d4 0eba3981c9
Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem.

Occupancy 0.05 100 1.00 916KB 0.06 100 1.00 1760KB 0.05 100 1.00 1070KB 0.06 100 1.00 366KB 0.06 100 1.00 473KB
PointCloud 0.05 86 1.02 18MB 0.06 96 1.04 25MB 0.05 84 1.13 19MB 0.06 88 1.22 10MB 0.14 80 0.98 45MB
Voxels 0.03 100 1.01 99KB 0.03 100 1.00 160KB 0.03 100 1.19 104KB 0.03 100 1.00 51KB 0.03 100 1.12 199KB
Cuboid[37] 0.14 71 1.12 32KB 0.11 78 1.03 24KB 0.11 35 1.00 23KB 0.09 62 1.00 15KB 0.17 87 1.17 41KB
SuperDec 0.16 86 1.17 46KB 0.16 93 0.98 46KB 0.13 100 1.07 33KB 0.15 88 1.22 40KB 0.19 57 1.10 58KB

Method 7cd2ac43b4 1841a0b525 25927bb04c e0abd740ba 0f25f24a4f
Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem.

Occupancy 0.06 100 1.00 1241KB 0.05 100 1.00 1053KB 0.06 100 1.00 407KB 0.06 100 1.00 554KB 0.05 100 1 7MB
PointCloud 0.05 100 1.09 25MB 0.04 89 0.98 16MB 0.06 100 1.01 11MB 0.06 97 0.93 16MB 0.07 61 0.97 99MB
Voxels 0.03 100 1.00 137KB 0.03 100 0.98 82KB 0.03 83 1.04 51KB 0.03 100 1.04 83KB 0.03 96 0.96 617KB
Cuboid[37] 0.21 80 1.04 57KB x x x 15KB 0.09 87 0.96 17KB 0.07 52 1.04 11KB x x x x
SuperDec 0.15 100 1.05 45KB 0.10 94 0.87 18KB 0.17 83 1.30 53KB 0.12 100 0.87 27KB 0.21 57 0.82 71KB

Table 6. Path Planning Results. We show results of path planning for different ScanNet++ [58] scenes, whose ids are reported on the top.
PointCloud method uses dense point clouds from ScanNet++, all other methods process the same input point cloud. Time refers to average
execution time of the validity-check function during the sampling stage of planning. Success rate (Suc.) is calculated after excluding
trials where no representation could generate valid path due to randomness of start and goal sampling. The Cuboid method encounters an
out-of-memory failure when fitting scene 0f25f24a4f due to its large scale, and fails to find any valid path in scene 1841a0b525.

5


	Introduction
	Related Work
	Method
	Single Object Decomposition
	Feed-forward Neural Network
	Optimization

	Decomposition of Full 3D Scenes

	Experiments
	Comparing with State-of-the-art Methods
	Results on ShapeNet
	Results on 3D Scenes

	Down-stream Applications
	Robotics
	Controllable Generation and Editing

	Analysis Experiments
	Conclusion
	Superquadrics
	Training Details

	Additional Results
	Qualitative results on scenes
	Replica
	ScanNet++
	Robot Experiment
	Setup
	Planning Results







