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A. Target Words Annotation Pipeline
Given the inherently flexible and diverse nature of tex-
tual descriptions, it is challenging for trackers to accurately
identify target words and context words. In our work, we
approach the identification of target words as a multi-label
binary classification task, enhancing the model’s ability to
recognize target words through supervised learning. How-
ever, existing benchmarks [20, 33, 61, 76] provide only tex-
tual descriptions without labeled information on the types of
target words (i.e., target words or context words). For such
a natural language processing task, we leverage the pow-
erful text understanding capabilities of the large language
models [37, 70] to construct an automated target words an-
notation pipeline. Specifically, we employ the widely-used
multimodal large language model, GPT-4o [37], and have
devised a specific core prompt to guide GPT-4o in recog-
nizing target words (as shown in Fig. A1).

Leveraging our automated annotation pipeline, we com-
plete the labeling of target words in textual data from the
MGIT [33], TNL2K [76], LaSOT [19], RefCOCOg [57],
OTB99-Lang [49] and Vasttrack [61] datasets. We conduct
a random sampling of the labeled results, inspect 50 sen-
tences, and find that the annotations are entirely accurate.
This ensures the reliability of our supervised models in clas-
sifying target words. In the future, we will open source both
the target words label information and our code.

B. Evaluation of Target Words Identification
In this section, we discuss the specific implementation
methods for the target words classification accuracy results
shown in Fig. 2 (a). Recent studies, such as QueryNLT
[65], TTCTrack [58] and OSDT [89], have utilized vision-
text similarity metrics to identify target words. Although
this is one of their main contributions, they have not pro-
vided quantitative evaluation results. For this, we conduct a
quantitative analysis based on the target words label infor-
mation obtained from Sec. A.

B.1. Similarity-Based Target Words Identification
Considering that QueryNLT [65], TTCTrack [58] and
OSDT [89] have not open-sourced their code, we employ
JointNLT [98], a representative vision-language tracker, as
a proxy model for evaluation. The core insight of JointNLT
is the use of a one-stream network to jointly model the fea-
ture extraction and interaction of text, template images, and
search images. The extensive feature interaction among

these elements can, to some extent, represent the feature in-
teraction operations conducted in the aforementioned works
for measuring vision-text similarity.

Specifically, at time step t(t → 0), after the feature en-
coding by the JointNLT’s backbone network, we obtain the
visual features f

t

V
↑ R400→512 and the textual features

f
t

L
↑ RL→512. Here, the length of the visual tokens is

fixed at 400, while the length of the textual tokens, L, is
determined by the number of words in the sentence. The
similarity between them is obtained through the following
operations:

att
t

vl
= (f t

L
)T · f t

V
, (A1)

where att
t

vl
↑ RL→400 represents the similarity between

each visual and textual token. By averaging along the di-
mension of the search tokens, we can determine the atten-
tion each textual token receives at the current time step t,
denoted as attt

l
↑ RL.

By concatenating att
t

l
at each time step in a video se-

quence along the time dimension, we can obtain a heatmap
of textual feature information for this sequence, denoted as
Attl ↑ RL→T , where T represents the number of frames in
the video sequence.

For a more intuitive understanding, we conduct a visu-
alization analysis using two video sequences as examples.
The related results are depicted in Fig. A2, which serves
as a supplement to Fig. 2 (b) and (c) in the main text. As
shown in Fig. A2 (a), the target being tracked in this se-
quence is “plane”. In the corresponding Attl heatmap, the
target word “plane” receives significant attention, indicating
that the tracker correctly understands the intent embedded
in the text prompt, and this text cue aids in the tracking pro-
cess. For the example in Fig. A2 (b), the intended tracking
target is “yellow people”, but the tracker primarily focuses
on the word “the light”. This indicates that the tracker did
not correctly focus on the target words, which could mislead
the tracking process.

B.2. Evaluation of Target Words Identification Ac-
curacy

In addition to qualitatively demonstrating the tracker’s abil-
ity to distinguish each word in the text as described above,
we also need to conduct a quantitative evaluation. First,
to analyze the tracker’s attention to each word throughout
the entire video sequence, we average Attl along the time
dimension, resulting in Resl ↑ RL. Each element in Resl

reflects the amount of attention the tracker gives to the word
at the corresponding position.



You are an expert in linguis0c analysis for dynamic visual tracking. Your task is to analyze a text descrip0on of a target object in a 
video and iden0fy which phrases describe the target‘s intrinsic a,ributes (stable proper0es that remain consistent with the 
object’s physical essence) vs. contextual a,ributes (dynamic proper0es that may change with scene evolu0on). Finally, output the 
phrases of the target‘s intrinsic aDributes in a structured format.

Rules:
1. Target‘s intrinsic a,ributes must sa0sfy:
- Directly describe the target’s inherent physical proper0es (e.g., category, color, material, shape, brand)
- Remain valid even if the target changes pose, loca0on, or interacts with other objects
- Examples: “red”, “car”, “striped”, “round glasses”

2. Contextual a,ributes must be:
- Related to the target‘s temporary state or environment (e.g., posi0on, mo0on, rela0ve rela0onships)
- Likely to become invalid due to scene dynamics
- Examples: “on the leO”, “jumping”, “next to a chair”

Examples:
1. Input: “a white van parked beside a traffic light”
Output: [{“phrase”: “white”, “reason”: “color is a stable property”},
{“phrase”: “van”, “reason”: “object category”}]

2. Input: “the running black cat with a collar”
Output: [{“phrase”: “black”, “reason”: “color aDribute”},
{“phrase”: “cat”, “reason”: “object category”},
{“phrase”: “collar”, “reason”: “physical accessory”}]

3. Input: “the second man from leO to right direc0on”
Output: [{"phrase": "man", "reason": "object category"}]

Ques:on: The input is {xx}, what should the corresponding output be ?  

Figure A1. Prompt used to guide GPT-4o in identifying target words information. This prompt primarily consists of two parts: task
requirement descriptions and example guidance. Replace {xx} with the sentence to be identified to achieve output results similar to the
example format.
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Figure A2. Visualization results of Attl across two video sequences. (a) In the sequence ’advSamp Plane video 7-Done’, the tar-
get “plane” receives significant attention during the tracking process, which aligns with our intended effect. (b) In the sequence
’advSamp Cartoon YellowPeople video Z01-Done’, the target “yellow people” is intended to be tracked, but the tracker primarily fo-
cuses on the text “the light”. This indicates that the tracker did not correctly focus on the target words, which could mislead the tracking
process.

Based on this information, we can map to obtain the
tracker’s final prediction results for target words classifica-
tion, p ↑ {0, 1}L. Specifically, based on the target words

label information obtained from Sec. A, we can determine
the number of target words k in the sentence. Then, we
calculate the top k elements and their indices in Resl. Sub-



sequently, we set the elements at these indices in p to 1,
while all other elements are set to 0.

Additionally, utilizing the target words label informa-
tion provided in Sec. A, we can obtain a ground truth label
g ↑ {0, 1}L. In this label, 0 indicates that the word to-
ken at that position is a context word, and 1 indicates it is
a target word. We then establish two accuracy assessment
metrics, namely, Accall and Acctarget, by performing differ-
ent calculations on p and g to evaluate the tracker’s accuracy
in classifying target words. Here, Accall represents the over-
all classification accuracy of the model for both target and
context words; while Acctarget focuses on the classification
accuracy specifically for target words.

Accall =

∑
L

i=1 1(pi = gi)

L
, (A2)

Acctarget =

∑
N

i=1 1(pi = 1 ↓ gi = 1)
∑

N

i=1 1(gi = 1)
. (A3)

Here, 1(·) is an indicator function that returns 1 if the con-
dition within the parentheses is satisfied.

Similarly, for our proposed ATCTrack and its predictions
about target words plt (see Eq. (1)), we can use the same
method to map it to p, and then use the above formula for
accuracy measurement. The corresponding accuracy results
are displayed in Fig. 2 (a). It is evident that our method sig-
nificantly outperforms methods based on vision-text simi-
larity in both metrics.

B.3. Analysis of Evaluation Results
Fig. 2 (a) shows the target words identification accuracy of
our method compared to the existing vision-text similarity-
based method [58, 65, 89]. As can be seen, our method
achieves an impressive 96.7% in the Acctarget metric, sig-
nificantly surpassing the latter’s 29.9%. This precise tar-
get word awareness lays a solid foundation for subsequent
text cue adjustment and utilization. This demonstrates that
our lightweight multilayer perceptron (Eq. (1)) effectively
transfers the LLMs’ target word distinguishing capability
into the tracker. Although existing LLMs have good target
word sensing capabilities, integrating LLMs directly into
the tracker incurs substantial computational costs, which is
detrimental to practical applications. Additionally, there are
lightweight text component analysis tools in the field of nat-
ural language processing, such as the widely used Scene
Graph Parser [64]. We evaluated the Scene Graph Parser’s
accuracy in identifying target words in sentences and found
it to be only 21.0%. This indicates that these tools are not
yet capable of meeting our target word identification needs
in a plug-and-play manner.

C. More Details on the ATCTrack
Due to space constraints, we focus primarily on the main
contributions of our paper in the Sec. 3, specifically the tex-
tual target-context guidance module (see Sec. 3.2) and the
visual target-context guidance module (see Sec. 3.3). For
other components of our tracker, such as the prediction head
and memory storage module, we provide a brief introduc-
tion using current mainstream methods, supplemented by
relevant references. In this section, we offer an additional
explanation of these components.

C.1. Prediction Head
The prediction head is used to predict the final bbox b

t.
We employ a CNN-based tracking head [80, 86], which is
widely adopted in tracker design. Firstly, for the search
feature f

t

R
↑ RNx→D that integrates both textual and vi-

sual cues, we transform it into a 2D spatial feature map.
Subsequently, after passing through Lh stacked Conv-BN-
ReLU layers, we obtain a classification score map P ↑
[0, 1]1→Hs→Ws , the size of the bbox B ↑ [0, 1]2→Hs→Ws ,
and the offset size O ↑ [0, 1)2→Hs→Ws . Then, the position
with the highest classification score is considered to be the
target position, i.e., (xd, yd) = argmax(x,y) Pxy . The final
target bbox is obtained as:

x = xd +O(0, xd, yd), (A4)

y = yd +O(1, xd, yd), (A5)

w = S(0, xd, yd), (A6)

h = S(1, xd, yd). (A7)

C.2. Memory Storage Module
As introduced in Sec. 3.4, we employ the sliding windows
method [7, 80] to update memory units, a method widely
used in recent vision trackers focused on temporal model-
ing. The visual memory feature M in MSM consists of a list
of Lm memory units m, denoted as M = {mi}Lm

i=1. Below,
we will illustrate how the sliding windows memory storage
method is implemented.

For a video sequence with T frames (0 ↔ t ↔ T ↗1), the
memory units in M need to be initialized when processing
the first frame (i.e., t = 0). Specifically, after encoding the
visual input information via a vision encoder, we obtain the
feature f

0
[C] encoded from the [CLS] token. Considering

that the [CLS] token can represent global visual features
[17], we use f0

[C] to initialize the Lm memory units. During
the time interval t ↑ [1, T ↗ 1], after tracking each search
frame, we obtain the updated memory unit mt. We pop the
memory unit with index 0 from M and append m

t to the
end of M .



Model Params Speed AUC P

JointNLT [98] 153M 31FPS 56.9 58.1
MMTrack [94] 177M 37FPS 58.6 59.4
MemVLT [25] 175M 32FPS 63.3 67.4
ATCTrack-B 160M 35FPS 67.5 73.6
ATCTrack-L 340M 30FPS 68.6 75.0

Table A1. Results of efficiency analysis.

D. More Details on Model Implementation
Due to space constraints, only core model implementation
details are provided in Sec. 4.1. Here, we supplement
some additional details. First, regarding the model struc-
ture, when performing context words calibration, we use
two stacked modules consisting of Eq. (3) and Eq. (4).
When executing visual memory representation, we use two
stacked modules consisting of Equations Eq. (6) and Eq.
(7). It is important to note that we only use the FFN in
the visual memory representation part. Considering that
the computational cost of FFN in Transformer modules
is higher than that of Attention [71], our module design
helps reduce the overall parameters and computation of the
model.

Additionally, for model training, we use the AdamW op-
timizer [53] to optimize our model. The text encoder re-
mains frozen, the learning rate is set to 10↑5 for the vision
encoder, 10↑4 for the remaining unfrozen modules, and the
weight decay is set to 10↑4 . We train for a total of 150
epochs and reduce the learning rate by a factor of 10 af-
ter 120 epochs. Finally, during the model inference stage,
dynamic template updating follows the implementation of
STARK [82]. We set the update interval to 25 and the up-
date confidence threshold to 0.8.

E. Experimental Details of Ablation Studies
In Sec. 4.3, we conduct detailed ablation analyses to inves-
tigate the properties of the various modules in ATCTrack.
Due to space limitations, we do not fully elaborate on the
specific implementation of the ablation experiments. In this
section, we provide additional details.

E.1. Ablation Study on important model compo-
nents

Tab. 2 presents the ablation study results of two core com-
ponents in our approach: the textual and the visual target-
context guidance modules. The specific implementations
are as follows:

Tab. 2 (#1) demonstrates the baseline results without
our textual and visual object-context guidance modules. In
this setup, textual features are processed as a whole en-
tity, an approach widely adopted by recent trackers such as

SNLT [74] and MMTrack [94]. Specifically, we employ a
transformer-based decoder to facilitate interaction between
textual features fL and search features f t

X
:

f
t

R
= TransDec(f

t

X
, fL), (A8)

where TransDec represents the standard transformer de-
coder layer [71], primarily consisting of attention opera-
tions and feed-forward networks. f t

R
denotes the search fea-

tures embedded with textual cues, which are subsequently
fed into the prediction head to obtain final tracking results.
To ensure fair comparison, we configure the transformer de-
coder with four layers, matching the parameter count with
the visual and textual object-context guidance module.

Tab. 2 (#2) shows the results using only the textual
object-context guidance module. In this implementation,
we omit the visual memory guidance process and directly
feed the output features f t

XL
from the textual target-context

guidance module into the prediction head to obtain final re-
sults.

Tab. 2 (#3) presents the results using only our visual
object-context guidance module. In this implementation,
we employ a transformer-based decoder to guide the search
features with textual information, which is formulated as:

f
t

XL
= TransDec(f

t

X
, fL), (A9)

For fair comparison, we implement a two-layer decoder ar-
chitecture.

Tab. 2 (#4) demonstrates the results of our complete
ATCtrack model.

E.2. Ablation Study on Textual Target-Context
Modeling

Tab. 3 shows different ways of utilizing textual cues, with
the specific implementations for each setting as follows:

Naive method. This setting is consistent with that of Tab.
2 (#1).

+ Target words awareness. This refers to the incorpora-
tion of target words awareness method based on the “naive
method” setting. Specifically, we concatenate the fLT with
fL to obtain context features fLC for subsequent textual
guidance.

+ Context words calibration. This refers to the incorpo-
ration of context words calibration operations based on the
“+ target words awareness” setting. This is the approach
adopted by our ATCTrack.

- Dual-type textual guidance. This approach utilizes only
the calibrated single-type text features fL→ for textual guid-
ance, where fLC = fL→ .



Method MGIT (Action) TNL2K LaSOT LaSOText

AUC PNorm P AUC PNorm P AUC PNorm P AUC PNorm P
Basic Variants

Wang [75] - - - - - - 27.7 - 30.4 - - -
Feng [21] - - - 25.0 34.0 27.0 50.0 - 56.0 - - -
Feng [22] - - - 25.0 33.0 27.0 35.0 - 35.0 - - -
GTI [85] - - - - - - 47.8 - 47.6 - - -
TNL2K-II [76] - - - 42.0 50.0 42.0 51.3 - 55.4 - - -
SNLT [23] 3.6 22.6 0.4 - - - 54.0 63.6 57.4 - - -
VLTTT [30] 46.8 60.2 31.8 54.7 71.8 55.3 67.3 80.2 71.5 48.4 59.9 54.3
TransVLT [91] - - - 56.0 61.7 - 66.4 - 70.8 - - -
JointNLT [98] 61.0 78.6 44.5 56.9 73.6 58.1 60.4 69.4 63.6 - - -
TransNLT [74] - - - 57.0 75.0 57.0 60.0 - 63.0 - - -
DecoupleTNL [54] - - - 56.7 - 56.0 71.2 - 75.3 - - -
All-in-One [87] - - - 55.3 - 57.2 71.7 82.4 78.5 54.5 63.5 -
MMTrack [94] - - - 58.6 75.2 59.4 70.0 82.3 75.7 49.4 59.9 55.3
QueryNLT [65] - - - 56.9 73.6 58.1 59.9 69.6 63.5 - - -
TTCTrack [58] - - - 58.1 - - 67.6 - - 48.8 - -
OSDT [89] - - - 59.3 76.2 61.5 64.3 73.4 68.6 - - -
OneTracker [32] - - - 58.0 - 59.1 70.5 79.9 76.5 - - -
UVLTrack-B [56] - - - 62.7 - 65.4 69.4 - 74.9 49.2 - 55.8
CTVLT [24] 69.2 - 62.9 62.2 - 79.5 72.3 - 79.7 - - -
ChatTracker-B [67] - - - 59.6 76.3 62.1 71.7 80.9 77.5 - - -
MemVLT [25] 69.4 81.3 63.7 63.3 80.9 67.4 72.9 85.7 80.5 52.1 63.3 59.8
SUTrack-B224 [14] - - - 65.0 - 67.9 73.2 83.4 80.5 53.1 64.2 60.5
SUTrack-B384 [14] - - - 65.6 - 69.3 74.4 83.9 81.9 52.9 63.6 60.1

ATCTrack-B 73.7 84.5 70.1 67.5 85.3 73.6 74.6 87.0 82.1 54.6 65.7 62.8
Performance-oriented Variants

ChatTracker-L [67] - - - 65.4 76.5 70.2 74.1 83.8 81.2 - - -
UVLTrack-L [56] - - - 64.8 - 68.8 71.3 - 78.3 51.2 - 59.0
SUTrack-L224 [14] - - - 66.7 - 70.3 73.5 83.3 80.9 54.0 65.3 61.7
SUTrack-L384 [14] - - - 67.9 - 72.1 75.2 84.9 83.2 53.6 64.2 60.5

ATCTrack-L 74.0 86.5 76.1 68.6 85.8 75.0 74.7 87.1 82.3 55.4 66.8 64.0

Table A2. Comparison with state-of-the-art vison-language trackers on four popular benchmarks: MGIT [33], TNL2K [76], LaSOT [19],
and LaSOText [20]. The best two results are highlighted in red and blue, respectively.

E.3. Ablation Study on Visual Target-Context Mod-
eling

Tab. 4 shows different ways of utilizing visual cues, with
the specific implementations for each setting as follows:

Naive method. This setting is consistent with that of Tab.
2 (#1).

+ ROI. This represents the augmentation of the “naive
method” by incorporating explicit visual memory features
for tracking assistance. Specifically, we employ the Region
of Interest (RoI) approach [62], which is widely adopted in
recent Visual-Language Trackers (VLTs) such as JointNLT

[98] and TrDiMP [73]. We apply RoI processing to the
search features f t

X
using the predicted bounding box scaled

by 1.5 to obtain localized search features f
t

X→ ↑ R36→D.
Subsequently, the visual memory representation process is
implemented through the following computations:

f[C]M → = Norm(f[C]M + !CA(f[C]M , f
t

X→)), (A10)

f[C]M →→ = Norm(f[C]M → + FFN(f[C]M →)). (A11)

+ Search + crop mask. This setting involves using a lo-
cal mask to construct the object-context indication map.
Specifically, for the global object-context indication map



Language description: “the ironman in red flying in the sky”
#001 #275 #550 #900 #1200 #1400 #1600 #1800#001 #275 #550 #900 #1200 #1400 #1600 #1800

Language description: “We want to track the man riding a bike”
#001 #120 #240 #285 #350 #420 #450 #500#001 #120 #240 #285 #350 #420 #450 #500

Language description: “the car running on the road ”
#001 #020 #040 #060 #080 #090 #100 #110#001 #020 #040 #060 #080 #090 #100 #110

Language description: “the black flying plane”

#001 #220 #350 #470 #600 #750 #900 #1020#001 #220 #350 #470 #600 #750 #900 #1020#001 #220 #350 #470 #600 #750 #900 #1020
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Language description: “the ironman in red flying in the sky”
#001 #275 #550 #900 #1200 #1400 #1600 #1800

Language description: “We want to track the man riding a bike”
#001 #120 #240 #285 #350 #420 #450 #500

Language description: “the car running on the road ”
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Figure A3. Qualitative comparison results of our tracker with other two state-of-the-art vision-language trackers (i.e., MemVLT and
UVLTrack) on four challenging cases. For each video case, we select representative frames to illustrate the predicted bounding boxes of
each model and plot the curves of the IOU predictions across the entire video. Better viewed in color with zoom-in.

h
t, we retain only the values within the area correspond-

ing to 1.5 times the predicted bbox, while setting the values
in all other areas to zero, resulting in h

t

l
. Then, the visual

memory representation process is implemented through the
following computations:

f[C]M → = Norm(f[C]M +!CA(f[C]M , h
t

l
↘ f

t

X
)), (A12)

f[C]M →→ = Norm(f[C]M → + FFN(f[C]M →)). (A13)

+ Search + global mask. This setting involves using a
global mask to construct the object-context indication map,



Method TNL2K LaSOT LaSOText

AUC PNorm P AUC PNorm P AUC PNorm P
Basic Variants

SiamFC [5] - - - 29.5 45.0 28.6 33.6 42.0 33.9
SiamRPN++ [43] - - - 41.3 48.2 41.2 49.6 56.9 49.1
SiamBAN [15] - - - 41.0 48.5 41.7 51.4 59.8 52.1
TransT [12] - - - 64.9 73.8 69.0 - - -
Stark [82] - - - 67.1 77.0 - - - -
KeepTrack [59] - - - 67.1 77.2 70.2 - - -
Mixformer [16] - - - 69.2 78.7 74.7 - - -
TransInMo [31] 52.0 58.5 52.7 65.7 76.0 70.7 - - -
OSTrack-256 [86] 54.3 - - 69.1 78.7 75.2 47.4 57.3 53.3
OSTrack-384 [86] 55.9 - - 71.1 81.1 77.6 50.5 61.3 57.6
AiATrack [28] - - - 69.0 79.4 73.8 47.7 55.6 55.4
SimTrack [10] - - - 69.3 78.5 - - - -
GRM [29] - - - 69.9 79.3 75.8 - - -
SeqTrack-B256 [13] 54.9 - - 69.9 79.7 76.3 49.5 60.8 56.3
SeqTrack-B384 [13] 56.4 - - 71.5 81.1 77.8 50.5 61.6 57.5
ARTrack-256 [77] 57.5 - - 70.4 79.5 76.6 46.4 56.5 52.3
ARTrack-384 [77] 59.8 - - 72.6 81.7 79.1 51.9 62.0 58.5
OSTrack-Zoom [39] 56.5 - 57.3 70.2 - 76.2 50.5 - 57.4
DropTrack [78] 56.9 - 57.9 71.8 81.8 78.1 52.7 63.9 60.2
ROMTrack-256 [8] - - - 69.3 78.8 75.6 48.9 59.3 55.0
ROMTrack-384 [8] - - - 71.4 81.4 78.2 51.3 62.4 58.6
F-BDMTrack-256 [84] 56.4 - 56.5 69.9 79.4 75.8 47.9 57.9 54.0
F-BDMTrack-384 [84] 57.8 - 59.4 72.0 81.5 77.7 50.8 61.3 57.8
EVPTrack-224 [66] 57.5 - 58.8 70.4 80.9 77.2 48.7 59.5 55.1
EVPTrack-384 [66] 59.1 - 62.0 72.7 82.9 80.3 53.7 65.5 61.9
ODTrack-B [95] 60.9 - - 73.2 83.2 80.6 52.4 63.9 60.1
AQATrack-256 [80] 57.8 - 59.4 71.4 81.9 78.6 51.2 62.2 58.9
AQATrack-384 [80] 59.3 - 62.3 72.7 82.9 80.2 52.7 64.2 60.8
ARTrackV2-256 [3] - - - 71.6 80.2 77.2 50.8 61.9 57.7
ARTrackV2-384 [3] - - - 73.0 82.0 79.6 52.9 63.4 59.1
HIPTrack [6] - - - 72.7 82.9 79.5 53.0 64.3 60.6
OneTracker [32] 58.0 - 59.1 70.5 79.9 76.5 - - -
LoRAT-B224 [50] 58.8 - 61.3 71.7 80.9 77.3 50.3 61.6 57.1
LoRAT-B378 [50] 59.9 - 63.7 72.9 81.9 79.1 53.1 64.8 60.6
SUTrack-B224 [14] 65.0 - 67.9 73.2 83.4 80.5 53.1 64.2 60.5
SUTrack-B384 [14] 65.6 - 69.3 74.4 83.9 81.9 52.9 63.6 60.1

ATCTrack-B 67.5 85.3 73.6 74.6 87.0 82.1 54.6 65.7 62.8
Performance-oriented Variants

ODTrack-L [95] 61.7 - - 74.0 84.2 82.3 53.9 65.4 61.7
LoRAT-L224 [50] 61.1 - 65.1 74.2 83.6 80.9 52.8 64.7 60.0
LoRAT-L378 [50] 62.3 - 67.0 75.1 84.1 82.0 56.6 69.0 65.1
SUTrack-L224 [14] 66.7 - 70.3 73.5 83.3 80.9 54.0 65.3 61.7
SUTrack-L384 [14] 67.9 - 72.1 75.2 84.9 83.2 53.6 64.2 60.5

ACTrack-L 68.6 85.8 75.0 74.7 87.1 82.3 55.4 66.8 64.0

Table A3. Comparison with state-of-the-art vision-only trackers on three popular benchmarks: TNL2K [76], LaSOT [19], and LaSOText

[20]. The best two results are highlighted in red and blue, respectively.



which is used to obtain explicit visual memory features.
This is the approach adopted by our ATCTrack.

E.4. Ablation Study on the Contribution of different
modules

w/o HiViT backbone. This setting refers to replacing the
HiViT backbone [69, 90] with the ViT backbone typically
used in conventional trackers [16, 86].

w/o dynamic template. This setting refers to using only
the original static template for visual input, without the
sparse dynamic template [82].

w/o TextualTC & VisualTC . This setting is the same as
setting in Tab. 2 (#1), meaning that the visual and textual
target-context guidance mechanism we designed is not uti-
lized.

w/o target words label. This setting, with the model struc-
ture unchanged, refers to not using target words supervision
signals, thus excluding Lbce loss.

F. Additional Experimental Results
F.1. Efficiency Analysis
In Tab. A1, we compare ATCTrack with the latest VLTs
(i.e., JointNLT [98], MMTrack [94], and MemVLT [25]) in
terms of efficiency (Params and Speed) and performance
(AUC and P on TNL2K). For ATCTrack-B, the param-
eters and tracking speed are comparable to recent track-
ers, but it shows significant performance advantages, such
as a 4.2% improvement in AUC compared to MemVLT.
For ATCTrack-L, the parameter scale is considerably larger
than ATCTrack-B, which leads to a further performance im-
provement.

F.2. Comparison with More Trackers
In Tab. 1 of Sec. 4.2, due to space constraints, we compare
ATCTrack with several recent high-performance vision-
language trackers. As a supplement, Tab. A2 presents the
performance of a broader range of vision-language track-
ers. Additionally, in line with the prevailing paradigm of
vision-language tracking models [25, 94, 98], Tab. A3 pro-
vides additional comparisons with vision-only trackers. The
strong performance of our model among these trackers fur-
ther demonstrates the effectiveness of our approach.

G. More Qualitative Results
Due to space limitations, Fig. 4 only presents four cases
for the qualitative comparison between our model and the
latest SOTA models. In this section, we provide additional
qualitative comparison results, as illustrated in Fig. A3.
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