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To improve the clarity and organization of the main paper,
this supplementary material is organized as follows. §A pro-
vides a review of additional related works on 3D occupancy
prediction and 3D Gaussian splatting. In §B, we provide de-
tailed implementation information and describe the training
losses used in our framework. §C offers additional qual-
itative and quantitative results. Lastly, §D discusses the
limitations of our approach and its societal implications,
highlighting areas for future research, ethical considerations,
and the potential societal impact of deploying autonomous
driving systems.

A. Additional Related Works

3D Occupancy Prediction. The safety and efficiency of
autonomous driving systems critically hinge on precise 3D
occupancy prediction to ensure safe navigation. 3D Oc-
cupancy Prediction focuses on determining whether each
voxel in a 3D space is occupied and assigning it a se-
mantic label [11, 23, 24, 26, 28, 37]. LiDAR-based meth-
ods [7, 15, 22, 30] excel in capturing spatial depth infor-
mation but lack rich semantic details, while vision-based
methods [4, 11, 36] provide abundant semantic information
yet struggle to accurately handle dynamic scenes. While
most methods focus on static 3D occupancy, they often
overlook temporal dynamics crucial for autonomous driv-
ing [11, 28, 37]. Recent advances include pipelines that
generate dense occupancy labels [27], and models that lever-
age 2D data to reduce dependence on costly 3D annota-
tions [19]. Challenges such as computational inefficiency in
grid-based methods and information loss in bird’s-eye-view
(BEV) based perception persist [10, 14, 24], with newer
object-centric approaches like GaussianFormer [12] aiming
to address these issues by optimizing resource allocation and
adapting to object scale and complexity [37].

Due to reasons of expressiveness, efficiency, and versa-
tility, occupancy-based world models are superior to those
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based on bounding boxes and segmentation maps [34]. Com-
pared to voxel representations, Gaussian representations of-
fer advantages such as adaptive allocation of computational
and storage resources, preservation of details, and explicit
semantic meaning [12]. GWM integrates Gaussian represen-
tations into voxel-based scene representations, preserving
these advantages. It not only accurately captures spatial de-
tails but also, through spatiotemporal modeling, effectively
handles temporal evolution in motion prediction.

3D Gaussian Splatting. 3D Gaussian Splatting (3DGS) [13]
is a recent technique that uses multiple 3D Gaussians for
radiance field rendering, achieving superior performance
in both rendering quality and speed [6]. Unlike traditional
explicit scene representations such as meshes [20, 21, 31]
and voxels [8, 18], 3DGS models complex shapes with
fewer parameters. Additionally, it enables fast rendering
through splat-based rasterization, projecting 3D Gaussians
onto 2D views and rendering image patches with local 2D
Gaussians. When comparing with neural radiance fields
(NeRF) [1, 17], 3DGS has lower computational complexity,
enabling faster rendering while maintaining accuracy. This is
particularly important in complex environments with multi-
sensor fusion. Recent advancements adapt 3DGS to dynamic
scenes [ 16, 33], with techniques like deformation networks
to model Gaussian motion [33] and HexPlane-based render-
ing for adjacent Gaussians [29]. These methods primarily
target monocular or multi-camera scenes, but challenges
remain in handling real-world autonomous driving scenar-
ios due to complex backgrounds, where high-speed move-
ment, sparse views, and dynamic objects with occlusion are
present [5, 35]. While 3DGS is optimized for static scene ren-
dering, dynamic applications in autonomous driving require
further adaptations, particularly to handle fast-changing envi-
ronments and sparse view inputs. GWM incorporates LIDAR
points as 3D Gaussian priors combined with spatiotemporal
dynamic modeling, effectively addressing spatial changes
and occlusions in dynamic environments. This approach
enhances the accuracy of 3D semantic occupancy prediction.
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B. Additional Details

B.1. Implementation Details

As shown in Fig.2 of the main paper, several key modules
contribute to our GWM, each playing a distinct role in pro-
cessing input data and generating future trajectories. Below,
we present the implementation details of these modules: 2D
Encoder, 3D Encoder, Gaussian Representation Learner
@, Uncertainty-Aware Simulator 1, and Uncertainty-Aware
Planner 6.

2D Encoder. 2D Encoder is responsible for extracting vi-
sual features from input images of the environment. The
implementation uses a ResNet101 network as the backbone.
3D Encoder. 3D Encoder is used for processing LiDAR
points and handling interactions between sparse 3D Gaus-
sians. Each Gaussian is treated as a point cloud located at
its mean value. These points are projected onto target voxel
grids. 3D sparse convolutions are then applied within the
voxel grid using spconv'. This effectively handles interac-
tions between sparse 3D Gaussians.

Gaussian Representation Learner ¢. ¢ is responsible
for learning Gaussian-based semantic occupancy representa-
tions from 2D and 3D data. The learner operates as follows:
Image Cross-Attention [12]: a set of reference points is
generated based on Gaussian covariance and mean, which
is then projected onto image features, with deformable at-
tention used for aggregating image features; Gaussian Re-
finement [12, 13] decodes intermediate attributes from the
Gaussian queries and uses them to refine the existing Gaus-
sian attributes. The reconstruction head and semantic head
are based on the Differentiable Tile Rasterizer [13].
Uncertainty-Aware Simulator ). Similar to [34], ¢ pre-
dicts future scene representations based on temporal context
using a transformer-like architecture: 1) Scene Tokenizer: to
obtain discrete tokens, we employ a vector-quantized autoen-
coder (VQ-VAE) [25]; 2) Spatial Aggregation: tokens from
different times are aggregated spatially using a multi-scale
representation to represent the scene at different granulari-
ties; 3) Masked Temporal Attention: temporal attention is
applied to the tokens, with causal masking ensuring that only
past and current tokens influence predictions for the future;
4) Decoder: the decoder generates future occupancy maps
from the tokens, reconstructing future 3D scenes.
Uncertainty-Aware Planner 6. 6 refines and generates
trajectories for autonomous navigation: 1) Trajectory Sam-
pling [9]: a sampler generates a set of candidate trajectories
7I+1 based on high-level commands, such as turning in-
structions; 2) Trajectory Selection: the cost volume is used
to evaluate each candidate, and the trajectory with the lowest
cost (r7+1) is selected, ensuring safety and efficiency; 3)
Trajectory Refinement [32]: the selected trajectory is en-
coded as an ego query and performs cross-attention with
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the future occupancy probability (hg;jl), drawing detailed

information from the environment. Finally, the enhanced
ego query is used to predict the final refined trajectory. The
planner integrates high-level environmental information and
dynamic context to output a safe and reliable trajectory for
the ego vehicle.

B.2. Training Losses

Our GWM is trained in two stages to effectively learn the
Gaussian representations and accurately model the joint evo-
lution of the ego vehicle and its environment.

First Stage: Learning Gaussian Representations. In the
first stage, we focus on training the 2D/3D encoders and the
Gaussian representation learner ¢ to construct the scene
representations. The total loss function for this stage is:

j¢ = A1 Lsem + A2Lrecon- (1)

Semantic loss L, calculates the discrepancy between pro-
jected semantic images and raw images:

Lsem = g(l — SSIM(S,8)) + (1 - B)[|IS — S|, (2
where S and S represent the projected and ground-truth se-
mantic segmentations, respectively; 3 balances the Structural
Similarity Index Measure (SSIM) loss and the L1 reconstruc-
tion loss. Reconstruction loss (L econ) €nforces consistency
between projected images I from the Gaussian representa-
tion and raw input images I:

Lrscn = 5 (1= SSM(L 1)) + (1 = BT = E1. (3

In the main text, we use I as a shorthand to denote both
the semantic maps and the raw input images for brevity;
however, in the present context these two uses should be
distinguished.

Second Stage: Learning, Forecasting, and Planning. In
the second stage, we train the simulator 1 and the planner
6 to predict future occupancy states and generate safe and

efficient trajectories. The loss function is:
Tp,0 = Leest + ‘C'plan: 4)

where forecasting loss (L) supervises the prediction of
future occupancy states. It averages the occupancy loss (i.e.,
a combination of the cross-entropy loss L. and the Lovasz-
Softmax loss Loy [2]) across N future frames:

_ Y T+f AT+f Thf AT+f
,Cfcst = N Zle (Lce(o , O ) + Llov(o , O )

+Lnee(0y 7,0, )),

(&)

where o/, obT+f , 0T+ and ég"‘f represent predicted
and ground-truth semantic and binary occupancies for future
frame f, respectively. Planning loss (Lpian) ensures the plan-
ner generates safe, efficient, and expert-like trajectories. It
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Table S1. Ablation study on simulator (§C.1).

Forecasting Planning
Method| 10Ut ToU(%)1|L2 (m)]. Collision (%)
GWM (w/o TA)| 803 1899 | 127 0.71
GWM (w/LSTM)| 9.14 2295 | 1.22 0.69
GWM (Full Model)| 1012 24.60 | 1.13 0.59

Table S2. Ablation study on planner (§C.2). We report L2 error
(m) and collision rate (%) at 1s, 2s, 3s, and their average (Avg.).
TR denotes Trajectory Refinement, UL denotes Uncertainty Loss.

L2(m) | Collision(%) |
2s 3s Avg.| 1s 2s 3s Avg.

Method
1s

GWM (w/ ego decoder [34])
GWM (w/o TR)

GWM (w/o UL)

GWM (Full Model)

0.501.362.49 1.45
0.451.272.421.38
0.421.202.131.25
0.341.012.051.13

0.130.481.64 0.75
0.100.411.590.70
0.080.381.55 0.67
0.070.26 1.45 0.59

includes: 1) Max-Margin loss: penalizes low-cost trajecto-
ries 771 that deviate from expert trajectory; 2) Imitation
learning loss: a naive L5 loss for imitation learning; 3) Colli-
sion loss: penalizes trajectories that intersect with obstacles;
4) Uncertainty Loss: it is discussed in the main paper.

Lptan = Lmm + L2 + Leon + Lunct, (0)

where Lm, L2, Leon, and Ly, denote the max-margin, im-
itation, collision losses, and uncertainty loss, respectively.
By combining these losses, GWM effectively learns to rep-
resent the environment using Gaussian-based semantic and
geometric features, anticipate future dynamics for safe and
precise decision-making, and plan trajectories that avoid
obstacles while following expert-like behavior. This compre-
hensive training regime ensures the robustness and efficiency
of GWM in dynamic and complex driving scenarios.

C. Additional Experiments

C.1. Simulator

We assess the impact of the Spatiotemporal Transformer [34]
in uncertainty-aware simulator. In Tab. S1, we compare our
full GWM model with two variants: one where the Trans-
former is replaced with an LSTM network (w/ LSTM), and
another where temporal modeling is removed entirely (w/o
TA). The model with LSTM achieves 9.14% Avg. mloU and
22.95% Avg. IoU in forecasting, and an average L2 error of
1.22m in motion planning. Without TA, the performance fur-
ther drops to 8.03% mloU and 18.99% IoU, and an average
L2 error of 1.27m. Our full GWM model with the Spatiotem-
poral Transformer achieves the best results, confirming that
the Transformer is essential for capturing temporal depen-
dencies and accurately predicting future scene evolutions.

C.2. Planner

In our ablation study on the planner, we evaluate the individ-
ual contributions of Trajectory Refinement [32] and Uncer-
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tainty Loss. The Trajectory Refinement module leverages the
future occupancy probability by encoding the selected tra-
jectory as an ego query, which then performs cross-attention
with the BEV representation of the future occupancy. This
mechanism enables the planner to extract detailed environ-
mental context, facilitating fine-grained trajectory adjust-
ments that enhance both navigation safety and efficiency.
As demonstrated in Tab. S2, the baseline OccWorld planner
(with an ego decoder) achieves an average L2 error of 1.45m
and a collision rate of 0.75%. GWM (w/o TR) achieves per-
formance to an average L2 error of 1.38m and a collision rate
of 0.70%, highlighting its role in refining trajectory quality.

On the other hand, the Uncertainty Loss is designed to
reduce the discrepancy between predicted and expert trajec-
tories by computing a reconstruction nonconformity score
and integrating a conformal prediction-based quantile term
into the training objective. This approach enforces the model
to generate more calibrated and reliable uncertainty esti-
mates. The impact of GWM (w/o UL) is evident from our
experiments: without Uncertainty Loss, the planner registers
an average L2 error of 1.25m and a collision rate of 0.67%,
while the full GWM planner that incorporates both modules
achieves the best performance — with an average L2 error
of 1.13m and a collision rate of 0.59%. These results con-
firm that both trajectory refinement and uncertainty loss are
essential for generating precise and safe trajectories under
varying environmental conditions.

C.3. Failure Case Study: Truck and Bus Confusion

In this subsection, we present an analysis of a specific fail-
ure case observed in our GWM. This issue arises primarily
in dense urban environments with high occlusion, limited
sensor views, and similar object characteristics. As shown
in Fig.3 of the main paper, the bottom row (GWM att = 1.5
and 2.0s) illustrates a common failure where the model incor-
rectly classifies a bus as a truck. This misclassification occurs
because trucks and buses share similar physical dimensions
(i.e., similar shapes and sizes), and occlusions often obscure
critical features, such as the vehicle’s front or rear design,
making differentiation challenging. The Gaussian-based
occupancy representation tends to generalize these two cate-
gories under low visibility conditions, especially when color
and texture information are absent. To address this failure
case, we suggest the following potential solutions: 1) En-
hanced Feature Extraction: improving the feature extraction
capabilities of the 2D and 3D encoders could provide more
distinctive information, aiding in better classification; 2)
Temporal Information Integration: using temporal data from
past frames could help distinguish trucks and buses, lever-
aging motion and shape changes over time. We will explore
these approaches in future work to address this failure case.



Table S3. Component-wise performance and efficiency of GWM
(§C.5). Measurements are conducted on an NVIDIA V100 GPU.

Value

Feature Extraction -
Spatial Representation -
mloU 27.53%
Avg. mloU 10.12%
Avg. L2 Error 1.13 m

Component‘ Stage ‘ Training Inference‘ Metric

127.34 ms 29.87 ms

2D Encoder| /5t stage
3D Encoder]| /st stage| 133.21 ms 36.12 ms
@|Ist stage|299.12 ms 89.56 ms
¢ & 1p12nd stage|1380.96 ms501.72 ms
02nd stage| 395.04 ms 204.92 ms|

C.4. Qualitative Results

Fig. S1 provides a visual comparison of the occupancy pre-
dictions. GWM demonstrates its capability in accurately
predicting the occupancy of moving objects.

C.5. Component-wise Performance and Efficiency

In Tab. S3, we measure the performance, training speed, and
inference speed of each component in both stages.

1st Stage: 2D/3D Encoders and Gaussian Representa-
tion Learner ¢. The integration of 2D and 3D data en-
ables comprehensive scene understanding. The Gaussian
representation enhances the model’s ability to handle uncer-
tainties and improves occupancy prediction accuracy. Here,
we evaluate the training and inference times of the 2D and
3D encoders and Gaussian learner ¢, in terms of the mil-
liseconds spent per frame. On an NVIDIA V100 GPU, the
training time per frame is approximately 127.34ms for the
2D encoder, 133.21ms for the 3D encoder, and 299.12ms for
the Gaussian representation learner. During inference, the
2D encoder runs at 29.87ms per frame, the 3D encoder at
36.12ms per frame, and the Gaussian representation learner
at 89.56ms per frame. The Gaussian learner ¢ contributes
significantly to the initial occupancy prediction accuracy
(mloU of 27.53%).

2nd Stage: Simulator ) and Planner 6. The simulator 1
is a spatiotemporal Transformer that predicts future scene
evolutions based on past observations. The planner 6 gen-
erates safe and efficient trajectories by evaluating potential
paths against predicted occupancy maps. The spatiotempo-
ral Transformer effectively captures temporal dependencies,
leading to accurate future occupancy predictions. The plan-
ner minimizes collision risks, enhancing navigation safety.
Training v and 6 involves learning complex temporal dynam-
ics and planning strategies. The simulator 1) requires more
computational resources due to the complexity of model-
ing temporal dynamics with the spatiotemporal Transformer.
The learner and simulator 1) have a training time of approxi-
mately 1380.96ms per frame, while the planner 0 requires
about 395.04ms per frame on an NVIDIA V100 GPU. Dur-
ing inference, ¢ and v operates at 501.72ms per frame, and
0 at 204.92ms per frame. The planner 0 is efficient and
enhances trajectory planning with a low average L2 error of
1.13m.
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D. Limitation and Societal Impact

Limitation. 1) Although the effectiveness of GWM has been
validated on the nuScenes [3] dataset, further investigation is
needed to evaluate its generalization across a broader range
of driving conditions, such as varying weather conditions,
diverse traffic densities, and geographically distinct locations.
To address this, we plan to conduct additional experiments on
the Occ3D-Waymo dataset [23], which will provide deeper
insights into the model’s robustness and adaptability. 2) A
failure case has been identified in our study: the truck and
bus confusion. To address this failure, we propose potential
solutions such as enhanced feature extraction and temporal
information integration. We will explore these approaches
in future work to mitigate this failure case.

Societal Impact. Our work aims to improve the safety and
efficiency of autonomous driving systems by enhancing the
accuracy of environmental perception and motion predic-
tion. By providing more robust and accurate modeling of
dynamic environments, GWM has the potential to reduce
traffic accidents and improve transportation efficiency. How-
ever, the deployment of such advanced autonomous driving
technologies raises societal concerns, including the potential
displacement of jobs in the driving sector, ethical consid-
erations in decision-making algorithms, and privacy issues
related to the collection and processing of sensor data. It is
important for stakeholders to address these concerns by de-
veloping appropriate regulations and ensuring transparency
in the deployment of autonomous systems.

License. We conduct our experiments using publicly avail-
able datasets, such as nuScenes [3], which is provided un-
der the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License (CC BY-NC-SA 4.0)".
Any use of the dataset must comply with the terms specified
by the dataset providers.

Computing Infrastructure. Our experiments are conducted
on a computing cluster with NVIDIA V100 GPUs, each
with 32GB of VRAM. The operating system used is Ubuntu
18.04, and the models are implemented using the PyTorch
framework.
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