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1. Datasets
KITTI360Pose. KITTI360Pose dataset consists of 3D
point cloud scenes from 9 urban areas, containing 43,381
paired descriptions and positions and covering a total area
of 15.51 km2. We use five regions for training, one region
for validation, and the remaining three regions for testing.
For more details, please refer to the supplementary material
in [2]. In our training set, we supplement the submaps
corresponding to the location descriptions with partially
matching submaps. However, the validation and test sets
remain unaltered, without additional processing. Details on
the selection criteria for partially matching submaps can be
found in the main text.
CityRefer. CityRefer dataset [3] is a large-scale dataset
built upon SensatUrban [1], featuring manually annotated
city-level 3D scene descriptions. This dataset consists of
photogrammetric point clouds of two UK cities covering 6
km2 of the city landscape and provides natural language de-
scriptions for 35,196 3D objects. Following a clipping strat-
egy similar to [2], we partition the map into submaps and
designate fully matching and partially matching submaps
for each query text. The dataset is split into 23,586 pairs
for training, 5,934 pairs for validation, and 5,676 pairs for
testing.

2. Implement Details
Our model is trained using the Adam optimizer. For the
fine-grained localization network, the model is trained for
35 epochs with a learning rate of 3e-4 and a batch size of
32, decaying the learning rate by a factor of 0.5 every 10
epochs. The constant term in the function L′

reg is excluded.
The coarse place recognition phase consists of training the
model for 20 epochs with a learning rate of 5e-4 and a batch
size of 32. A multi-step training schedule is adopted, where
the learning rate decays by a factor of 0.4 every 7 epochs.
The temperature coefficient τ is set to 0.1. For the hyperpa-
rameters in L′

iou, we set α, β and γ to 0.25, 250, and 0.028,
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respectively. Each submap is assumed to contain a fixed
28 object instances. To make a fair comparison, we set the
embedding dimension for both text and submap branches
as 256 in coarse place recognition and 128 in fine-grained
localization.
Training strategy. A key distinction of our approach from
existing SOTA methods is that we incorporate both partially
matching and fully matching samples in a coarse-to-fine
training framework. In the coarse place recognition stage,
we optimize the model using a combination of Lcon and
L′

iou, In the fine-grained localization stage, we optimize the
model using L′

reg .
Architectural components of the network. Following
Text2Loc, we employ the T5 pre-trained model [5] for text
feature extraction and PointNet++ [4] for point cloud en-
coding. In the coarse place recognition stage, the global
feature of the query text T is extracted via a two-layer max-
pooling operation, while a single max-pooling layer obtains
the global feature of the semantic submap. These repre-
sentations are then optimized through contrastive learning.
For fine-grained localization, hint features from the query
text T are extracted using a single max-pooling layer and
fused with semantic submap instance features via a cas-
caded Cross Attention Transformer, generating a fused rep-
resentation for regression-based localization.

Figure 1. The cumulative distribution of uncertainty score over
the partially matching samples on KITTI360Pose dataset(left), and
the curves of decaying exponential function ϕ(σ) using different
hyper-parameter combinations
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α β γ Top-1 Top-3 Top-5

0.25, 285, 0.028 0.33 0.55 0.64
0.50, 285, 0.028 0.31 0.51 0.60
0.50, 250, 0.028 0.32 0.54 0.63
0.25, 250, 0.022 0.32 0.53 0.62
0.25, 250, 0.037 0.31 0.52 0.60
0.25, 250, 0.028 0.34 0.56 0.65

Table 1. Comparisons of retrieval performance using different
hyper-parameter combinations for the decaying exponential func-
tion ϕ(σ)

3. Hyper-parameter Setting.
Based on the definition in Equ.6, we design an uncertainty-
aware similarity metric to enable effective similarity assess-
ment within the feature embedding space, utilizing a decay-
ing exponential function ϕ(σ) to regulate similarity weight-
ing. In this section, we describe the methodology for select-
ing the three hyperparameters α, β, and γ in ϕ(σ). Fig. 1
(right) visualizes function curves under different parame-
ter settings. From these curves, we observe that the func-
tion ϕ(σ) exhibits a monotonic decrease with increasing
uncertainty score σ, indicating that high-uncertainty sam-
ples have less influence on model training. The parame-
ter γ controls the uncertainty threshold beyond which sam-
ples are suppressed. As indicated by the green curve with
γ = 0.037, samples with uncertainty higher than 0.037 will
exert little influence for training, meaning that 20% of the
data is suppressed. Reducing γ makes more samples to be
suppressed and the proportion of the suppressed samples
can be visualized through the cumulative distribution of the
uncertainty, as illustrated on the left of Fig. 1. The param-
eters α and β control the smoothness of the function curve,
as reflected in the differences among the red and orange
curves. Specifically, increasing α and decreasing β lead to
a smoother curve.

In Table 1, we report the quantitative retrieval perfor-
mance corresponding to different function curves. The re-
sults show that compared to γ = 0.022 or γ = 0.028, set-
ting γ = 0.028, which retains 50% of the samples, achieves
optimal performance. This finding highlights the impor-
tance of mitigating cross-modal ambiguity introduced by
partially matching samples. Furthermore, we observe that
increasing α and decreasing β consistently improve per-
formance, suggesting that a smoother curve contributes to
better model generalization. Based on these observations,
we set α, β, and γ to 0.25, 250 and 0.028, respectively.
It is important to note that the value of γ varies across
the KITTI360Pose and CityRefer datasets, as the quantile
threshold is dataset-dependent, determined by the cumula-
tive distribution specific to each dataset.

4. Embedding Space Analysis.
Fig. 2 illustrates the learned embedding space using T-SNE,
comparing our method with Text2Loc in the coarse place

Figure 2. T-SNE visualization for the text query features and
submap features in the coarse place recognition stage.

recognition stage. As observed, in Text2Loc, the features
of query texts remain relatively distant from their corre-
sponding fully matching submap features. Additionally, in
some cases, the feature distance between partially match-
ing samples is even smaller than that between fully match-
ing samples, which is consistent with the findings from the
qualitative analysis presented in the main text. In contrast,
our method effectively reduces intra-space distances for
both fully matching and partially matching samples, while
also preserving the distinction between them. This results
in a more structured and discriminative embedding space.
Moreover, these findings highlight the complementary role
of partially matching sample in refining spatial retrieval and
representation learning.

5. More Visualization Results
In this section, we provide additional visualizations of point
cloud localization from query text in Fig. 3. Unlike the vi-
sualizations in the main text, Fig. 3 highlights the advantage
of our method more clearly by using green boxes to indicate
both partially matching and fully matching submaps.

In the coarse place recognition stage, our method suc-
cessfully retrieves a submap containing the ground truth
within the top-3 results in most cases. As observed in the
first three rows, when both partially matching and fully
matching submaps are retrieved, our method ranks the fully
matching submap higher than the partially matching one.
This suggests that our uncertainty-aware assignment loss
enables the model to learn more information about submaps
containing the ground truth, and differentiate feature in-
formation between partially matching samples and fully
matching samples, improving retrieval accuracy. In the
last three rows, the model fails to retrieve a fully match-
ing submap within the top-3 results. This issue is particu-
larly evident in the last row, where no submap containing
the ground truth is found. The primary reason for these
failures is that the point cloud instances mapped from the



Figure 3. Qualitative localization results on KITTI360Pose: In coarse place recognition stage, the numerical values within the top-3
retrieved submaps indicate the distance between the center of the retrieved submap and the ground truth. Green boxes highlight submaps
that contain the ground truth, whereas red boxes denote incorrectly retrieved submaps. In fine-grained localization stage, red and yellow
dots represent the ground truth and the predicted position, respectively. The red numerical values indicate the distance between the predicted
position and the ground truth.

query text appear in numerous submaps, leading to incor-
rect retrieval results.

For fine-grained localization, we focus on visualizing the
predicted positions within the submap nearest to the ground
truth. The first three rows demonstrate that our method
achieves high precision in predicting the ground truth within
fully matching submaps. In the fourth and fifth rows, we
observe that even within partially matching submaps, our
method maintains high localization accuracy. However, in
the last row, localization prediction fails inevitably due to
the retrieval failure in the coarse stage.

These results indicate that the overall localization per-
formance in the coarse-to-fine text to point cloud localiza-
tion task is highly dependent on retrieval performance in the
coarse stage. Moving forward, we aim to improve retrieval
accuracy by: enhancing feature discriminability, and incor-
porating richer textual descriptions, such as street names
and nearby landmarks.
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