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Supplementary Material

A. Supplementary on Baselines and Experimen-
tal Criteria

Text2Tex is an inpainting-based approach, while SyncMVD
and TexPainter leverage synchronizing techniques (at latent
space and image space) to enhance multi-view consistency.
In contrast, Paint3D employs an inpainting-dependent tex-
ture synthesis in the first stage, followed by a UV-based
refinement to enhance the texture quality. On the other
hand, TexGen utilizes an end-to-end UV space diffusion
approach to generate textures. However, since their work
relies on a incomplete UV texture as a starting point, we
used a partial texture baked from the original reference im-
age for initialization. Since most of the existing work fo-
cuses on a text-to-texture task, we improved the original
SyncMVD [2] (referred to as SyncMVD-IPA) by incorpo-
rating the SDXL-base model [4] and an additional Image
IP-adapter [7] to align with an image-to-texture task and
compared it with our approach. Specifically, leveraging the
Clean-FID [3] implementation, we harnessed a CLIP-version
of Fréchet Inception Distance FIDCLIP to compute the dis-
tance re-renderings and the ground-truth renderings. Besides,
the recently proposed CLIP Maximum-Mean Discrepancy
(CMMD) [1] is also utilized to serve as an complementary
criteria to validate the distribution of generated texture. In
addition to these two metrics, we also use CLIP-I / CLIP-T
score [5] to validate semantic alignment between renderings
of the generated texture map and given image / text and
LPIPS [8] to estimate the consistency between renderings of
the generated texture map and the reference images.

B. Supplementary on 3D-aware RoPE

Inspired by Rotary Position Embedding (RoPE) [6] in lan-
guage modeling, we inject positional information by rotating
hidden state vectors according to the corresponding voxels,
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f(xm, (x, y, z)) =



x0
x1

...
xm

xm+1

...
x2m+1
x2m+2

...
x3m+3


⊗



cosxθ0
cosxθ0

...
cosxθ⌊m/2⌋

cos yθ⌊(m+1)/2⌋
...

cos yθm
cos zθm+1

...
cos zθ⌊(3m+3)/2⌋


+



x1
−x0

...
−xm−1
xm+2

...
−x2m
x2m+3

...
x3m+2


⊗



sinxθ0
sinxθ0

...
sinxθ⌊m/2⌋

sin yθ⌊(m+1)/2⌋
...

sin yθm
sin zθm+1

...
sin zθ⌊(3m+3)/2⌋



(1)

C. Supplementary on Ablation Study

To further evaluate the effectiveness of 3D-aware RoPE nu-
merically, we introduced a criterion called the local align-
ment distance (LAD). This score computes the average Mean
Squared Error (MSE) over overlapping regions between ad-
jacent views, providing a quantitative measure of multiview
coherence. The LAD is defined as follows:
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where TUV

v and MUV
v represent the texture and mask in

UV space unwrapped from the image of view v. As demon-

Method LAD

w/o MVA 0.142
w/o 3D-aware RoPE 0.123
w/o 3D-aware RoPE 0.119

Table 1. Ablation study on local alignment distance (LAD)

strated in Suppl. C, our 3D-aware RoPE significantly out-
performs the naive self-attention mechanism that lacks 3D
geometry awareness.
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