St4RTrack: Simultaneous 4D Reconstruction and Tracking in the World

Supplementary Material

Contents
1. Introduction 1
2. Related Works 2
3. Simultaneous Reconstruction and Tracking 3
3.1. Unified 4D Representation of St4RTrack 3
3.2. Joint Learning of Tracking and Reconstruction 5
3.3. Adapt to Any Video without 4D Label . . . . 5
4. Experiments 6
4.1. Experimental Details . . . . . ... ... .. 6
4.2. 3D Tracking in World Coordinates . . . . . . 7
4.3. Dynamic 3D Reconstruction . . . . ... .. 8
4.4. Joint Tracking and Reconstruction in the World 8
5. Conclusion 8
6. Acknowledgements 9
A Discussion 12
B. Differentiable Camera Pose Estimation 12
C Details on the WorldTrack Benchmark 12
C.l.Datasets . . . . ... ... .......... 12
C.2. Additional Quantitative Evaluation . . . . . 13
C.3. Qualitative Evaluation . . . . ... ... .. 14
D Details on Test-Time Adaptation 14
D.1. Implementation Details . . . . . .. ... .. 14
D.2 Ablation Studies . . . . ... ... ... .. 14
E Additional Results 14
F. Discussion and Future Work 14

A. Discussion

Despite St4RTrack presents a promising step toward a uni-
fied understanding of dynamic scene geometry and motion
in a minimalist way, a challenge arises from the per-frame
setting. In particular, issues such as scale misalignment,
large camera movements, and occlusions are not fully re-
solved. Incorporating temporal attention across multiple
frames would help capture richer motion priors and alle-
viate these limitations. Another limitation arises from the
pretraining dataset’s limited diversity and realism in both
geometry and motion, necessitating test-time adaptation to

improve St4RTrack’s robustness in out-of-distribution sce-
narios. However, it still struggles with highly complex mo-
tions. Expanding the training set is therefore a key di-
rection for future work. We envision that large-scale pre-
training, when compute permits, could significantly boost
St4RTrack’s performance and enable it to better handle
complex, in-the-wild videos.

B. Differentiable Camera Pose Estimation

We seek to backpropagate the projection loss to the 3D
pointmaps through the camera pose. To this end, we
build upon the RANSAC-PnP approach from DUSt3R [61],
which initially solves for pose P* (rotation and translation)
by matching per-pixel 2D-3D correspondences in the recon-
struction pointmap X;. However, RANSAC is inherently
non-differentiable.

To enable end-to-end gradients, we adopt the derivative-
based Gauss-Newton (GN) solver inspired by EPro-PnP [5].
Specifically, after obtaining a detached solution P* from
RANSAC-PnP, we refine it using one GN step:

AP = —(JT0) " T F(PY), (13)

where F(P*) = [ f{| (P¥), ...
reprojection error for all V points, and J =
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is its Jacobian. The term J " .J approximates the Hessian of

the negative log-likelihood (NLL), while J " F(P*) is the
gradient of the NLL with respect to the pose. This gradient
effectively pushes the incremental solution AP toward re-
ducing the reprojection errors. The final differentiable pose
estimate is:

P = P* + AP. (14)

Since P* is detached, only the GN increment AP remains
differentiable, allowing the reprojection loss to backpropa-
gate through P and thus refine the 3D pointmaps.

C. Details on the WorldTrack Benchmark
C.1. Datasets

Dataset Preparation. For the two real-world datasets, we
adopt the 3D camera coordinate tracking annotation of ADT
and Panoptic Studio from the TAPVID-3D dataset. Using
the paired camera parameters provided, we transform the
camera coordinates to the world coordinate system. For
the two synthetic datasets, we use the test sets from Point
Odyssey and Dynamic Replica Dataset. We uniformly
downsample the query points to approximately 1,000 per
sequence. Each sequence contains 128 sampled frames,



Table 3. World Coordinate 3D Point Tracking (EPE - Global Median) . We report end-point error (EPE; lower is better) for both all
points and dynamic points after global median alignment. The best (lowest) values are in bold.

All Points Dynamic Points
Category Methods PO DS ADT PStudio PO DS ADT PStudio
Combinational SpaTracker+RANSAC-Procrustes  0.6408 09185 0.5876  0.4266  0.4358 1.0444 0.1600  0.4266
SpaTracker+MonST3R 0.5917 0.8823  0.5362  0.4837  0.4085 09136 0.1511  0.4837
MonST3R 0.9021 04387 0.2721  0.4568  0.6452 0.5313  0.1578  0.4568
Feed-forward SpaTracker 0.7499 09274 0.8530 0.3094 04695 1.0828 0.1628  0.3094
St4RTrack (Ours) 0.3140 0.2682 0.2680  0.2637  0.2970 0.2961 0.1212  0.2637

Table 4. World Coordinate 3D Point Tracking (APD/EPE - SIM(3)). Each cell shows APDsp (higher is better) / EPE (lower is better)

after global IM(3) alignment. The best APD (highest) and the best EPE (lowest) in every column are bold.

All Points Dynamic Points
Category Methods PO DR PStudio PO DR ADT PStudio
. SpaTracker+Procrustes 46.20/0.5670 55.10/0.5292 59.40/0.4027 67.82/0.2660 61.00/0.3338 61.65/0.3720 88.65/0.0596 67.82/0.2660
Combinational

SpaTracker+MonST3R 48.23/0.5388 56.78/0.5069 60.01/0.3910 64.32/0.2971 61.78/0.3290 61.88/0.3681 87.32/0.0485 64.32/0.2971

MonST3R

Feed-forward SpaTracker

37.62/0.8073 64.83/0.3725 79.48/0.1881 64.11/0.3015 48.95/0.4768 55.36/0.3872 84.73/0.0720 64.11/0.3015
43.17/0.6079 54.65/0.5324 53.96/0.4963 80.76/0.1650 60.49/0.3374 61.32/0.3750 87.68/0.0616 80.76/0.1650

StdRTrack (Ours)

71.84/0.2774 76.28/0.2436 83.03/0.1631 76.97/0.1969 67.43/0.2870 67.90/0.2627 85.34/0.0688 76.97/0.1969

Table 5. World Coordinate 3D Reconstruction (APD/EPE -
SIM(3)). Results on Point Odyssey (PO) and TUM-Dynamics af-
ter global SIM(3) alignment. Lower is better for EPE, higher is
better for APD. The best results are in bold.

Point Odyssey TUM-Dynamics

Category Methods EPE| APD{ EPE| APD?t

DUSt3R+GA  0.3541 62.42 0.2989 69.23
w/ Global Align. MASt3R+GA 0.3717 61.31 0.5294 49.81
MonST3R+GA 0.2601 69.31 0.3173  66.00

C.2. Additional Quantitative Evaluation

Following TAPVid-3D [26], we adopt global median scale
alignment, since both our predictions and the ground truth
use the first frame’s camera coordinate system as the world
coordinate. The Average Percent of Points within Distance
(APD3p) measures the overall accuracy of the 3D trajec-
tories in world coordinates, while Euclidean endpoint er-
ror (EPE) offers a complementary perspective on localiza-
tion accuracy. Accordingly, we additionally report EPE re-
sults on the WorldTrack benchmark. As shown in Table 3,

B&SS%]; 312;; 22(7)(9) 82222 j;jg St4RTrack attains state-of-the-art EPE on all sub-test sets,
Feed-f d . . . 47 . . . . ' ’
eed-forwar MonST3R 03462 6210 03508 6283 consistent with the APD;p results in the main paper. Be

StdRTrack 0.2741 69.53 0.2413 74.14

though only the first 64 frames are used for evaluation. This
results in 160 and 140 sequences from Point Odyssey and
Dynamic Replica, respectively. From these, we randomly
sample 50 sequences per dataset for evaluation.

Filtering Criteria. To ensure data quality, we apply sev-
eral filtering strategies: For TUM, we keep the pixels which
associated with depth values within 0.1 - 5 meters, as the
depth camera is less accurate at long range. For Point
Odyssey, we exclude sequences generated in the Kubric
style [15] due to their lack of realism. We also remove
scenes with ambiguous depth (e.g., heavy foggy condi-
tions), and any frames where the camera intrinsics are dy-
namic.

yond alignment to the first camera’s pose, we also evaluate
under SIM(3) alignment (i.e., SE(3) plus a global scale fac-
tor) for both APD3p and EPE to assess performance of 3D
tracking (See Tab. 4) and reconstruction (See Tab. 5) un-
der a more flexible registration. Comprehensive evaluations
show that St4RTrack achieves state-of-the-art performance
in most scenarios.

Additionally, we’ve implemented a 2D tracking base-
line,“CoTracker3+MonST3R (w/ GA)”, for the complete-
ness. It achieved only 48.18%, 59.10% APD and 0.676m,
0.382m EPE on the PO/PStudio datasets, respectively, no-
tably worse than the 60.71%, 66.14%, and 0.342m, 0.281m
achieved by our method. The 2D-based tracking methods
cannot be estimate points when occluded, as they do not
reason in 3D space.

Moreover, We evaluate St4RTrack on camera pose and



Table 6. Depth and Camera Pose Evaluation. We compare
with MonST3R global alignment and fully feed-forward version
for depth prediction and camera pose evalution on two datasets.

Sintel Bonn Sintel TUM
AbsRel|  §<1.251  AbsRell 5<1.25 1 | ATEL  ATE|

MonST3R (w/ GA) 0.335 58.5 0.063 96.4
MonST3R (FFW) 0.443 56.6 0.066 95.6
StdRTrack (FFW) 0.318 62.2 0.065 95.6

0.108 0.074
0.416 0.071
0.348 0.045

Figure 5. Qualitative Results of Camera Pose Evaluation.

monocular depth evaluation following MonST3R’s setup on
Sintel, Bonn, and TUM (see table below). As in Tab. 6, our
feed-forward method outperforms MonST3R-FFW across
all metrics and approaches MonST3R+GA in several cases.

C.3. Qualitative Evaluation

We present the qualitative results of our fully feed-forward
approach on WorldTrack benchmark. Specifically, we show
the reconstruction results in Fig. 7 (TUM-Dynamics) and
Fig. 8 (Point Odyssey). We show the tracking results of all
four datasets in Fig. 9.

D. Details on Test-Time Adaptation

D.1. Implementation Details

We set the weights of different loss factors in Eq. (11) to
Atraj = 1, Adepth = 10, and Agjign = 5. For WorldTrack eval-
uation, the two test-time adaptations are set up as follows:
Sequence-Level (Instance) Adaptation: Fine-tune a sep-
arate model for each of the 50 sequences. We sample 300
frames per epoch, train for 3 epochs, and use a batch size of
4. Dataset-Level (Domain) Adaptation: Fine-tune a sin-
gle model on the entire dataset. We sample 100 frames per
epoch, train for 15 epochs, and use a batch size of 4.

D.2. Ablation Studies

We perform an ablation study to evaluate two key design
choices of our method and present qualitative results in
Fig. 6. First, we assess the effectiveness of our pretrain-
ing stage by directly applying test-time adaptation to a pre-
trained checkpoint from MonST3R [67], without finetuning
the base model on our training datasets. As shown in Fig. 6
(column 2), the baseline exhibits unaligned pointmaps be-
tween the tracking and reconstruction branches, underscor-
ing the importance of pretraining on synthetic data—even
in the presence of a domain gap with real-world data.
Second, we evaluate the impact of our proposed test-
time adaptation. As demonstrated in Fig. 6 (column 3), the

Table 7. World Coordinate 3D Tracking (Median-Scale).
End-point error (EPE |) and APD3;p 1 for DR and PStudio after
global median scaling. Best (lowest EPE / highest APD3p) in each
column is shown in bold.

DR PStudio
Methods EPE| APD1T EPE| APD?
Spatialtracker+Procrustes-RANSAC  0.9185 55.01 0.4266 52.05
St4RTrack 0.2682 73.74 0.2637 69.67
St4RTrack + TTA (per-sequence) 0.2472  76.07 0.2243 73.71
St4RTrack + TTA (per-dataset) 0.2547 74.86 0.2280 73.30
w/o trajectory loss 0.2767 7275 0.2421 72.50
w/o depth loss 0.5524 4822 0.2975 66.50
w/o alignment loss 0.3263 66.65 0.3357 60.07
w/o pre-training 0.3377 6550 0.3801 57.71

adapted model successfully corrects drifting points, ensur-
ing that points consistently trace back to their original spa-
tial locations in the first frame. This finding supports our
analysis that small-scale training data alone is insufficient
for fine-grained prediction, particularly at the boundaries of
moving objects. In contrast, St4RTrack produces spatially
aligned pointmaps with significantly fewer drifting points.
The colorful tails in the visualization indicate the long-term
trajectories, while the accurately predicted geometry in dy-
namic regions results in a crisp and precise rendering.

Furthermore, we ablate (1) the performance gain from
the feed-forward St4RTrack, instance-level adaptation, and
domain-level adaptation, and (2) the contribution of each
TTA component by omitting individual elements. Table 7
summarizes our findings. First, both TTA variants yield
substantial improvements over the feed-forward mode, with
instance-level adaptation achieving the highest accuracy, as
it fully specializes to each test sequence. Second, remov-
ing any single TTA component—trajectory loss, depth loss,
alignment loss, or synthetic pretraining—causes a perfor-
mance drop in all scenarios, underscoring the necessity of
each component.

E. Additional Results

We also present additional results for both feed-forward
only (Fig. 10) and test-time adaptation (Fig. 11) below.

F. Discussion and Future Work

While the key insight of St4RTrack is that unified 4D re-
construction and world-coordinate tracking can be achieved
without modifying the original DUSt3R architecture, but
rather by simply redefining the pointmap outputs, we found
the long sequence non-overlapping cases remain challeng-
ing. This is mostly due to the lack of explicit temporal
modeling—i.e., incorporating temporal context via global
alignment (as in DUSt3R/MonST3R) or temporal attention
(as utilized in video models). It remains a limitation of
St4RTrack and thus represents a promising future direction.
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Figure 6. Ablation Study. We show the qualitative comparison of our full method and variants that do not pretrain or do not adapt in test
time. Predicted pointmaps from two heads are visualized together.

Input Frames GT Pointmaps Predicted Pointmaps | Aligned Result

Figure 7. Reconstruction Results of St4RTrack on TUM-Dynamics Dataset. From left to right, we show 1) the sampled frames from
the input sequence of 64 frames, 2) the subsampled ground truth pointmaps, 3) the predicted pointmaps of our method, and 4) the aligned
results of the predicted and GT pointmaps with median-scale. Note that the reconstruction result is inferred in a feed-forward way.



Input Frames GT Pointmaps Predicted Pointmaps Aligned Result
Figure 8. Reconstruction Results of St4RTrack on Point Odyssey Dataset. From left to right, we show 1) the sampled frames from
the input sequence of 64 frames, 2) the subsampled ground truth pointmaps, 3) the predicted pointmaps of our method, and 4) the aligned
results of the predicted and GT (yellow) pointmaps with median-scale. Note that the reconstruction result is inferred in a feed-forward way.
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Figure 9. Tracking Results of St4RTrack on WorldTrack Benchmark. We show the 2D and 3D visualized results of the predicted
tracks (visualized as “+) aligned with the ground truth tracks (visualized as “®”). The corresponding datasets are Point Odyssey (top left),

Dynamic Replica (top right), Arial Digital Twin (bottom left), and Pnapotic Studio (bottom right).



Input Video Pair Output Accumulated Reconstruction Accumulated Tracking

Figure 10. Fully Feed-Forward Inference Results of St4RTrack. We show from left to right: 1) the input video, 2) the pairwise output
for tracking (in blue) and reconstruction (in yellow) of the same frame, 3) the accumulated results of the reconstruction pointmaps, and 4)
the accumulated results of the tracking pointmaps. Note that we anchor the middle frame as the reference frame for point tracking.

Input Video Pair Output Accumulated Reconstruction Accumulated Tracking

Figure 11. Test-Time Adaptation Results of St4RTrack. The first frame is set to be the reference frame.
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