
A. Additional Ablation Studies
Due to space constraint, we provide the rest of the ablation
studies here.

A.1. The Video-Centric Branch
Given that VideoOrion adopts a two-branch design, we in-
vestigate the effectiveness of both branches. In Table 4,
we have demonstrated the efficacy of the proposed Object-
Centric Branch. Here, in Table 7, we present the perfor-
mance of the object-only baseline. Relying solely on ob-
ject tokens results in a performance decline, as only a lim-
ited number of tokens—at most 64, or fewer depending
on the video—are used to represent the video (≤ 64 v.s
576 for video-branch). This underscores the importance of
the video-centric branch in providing contextual informa-
tion. However, on certain benchmarks (e.g., Perception),
the object-only baseline achieves performance comparable
to the video-only baseline (with 576 tokens for the video),
suggesting that object tokens capture essential information.

Table 7. Ablation study on the Video-Centric Branch.

Model MVBench Egoschema Perception VideoMME Avg.

object-only 37.0 34.3 43.3 40.8 38.9
VideoOrion 44.2 44.5 46.3 46.1 45.3

A.2. The Object-Centric Branch Pretraining Stage
We assess the impact of the additional Object-Centric
Branch pretraining stage by comparing it to a randomly
initialized Object Branch. In this experiment, the Video-
Centric Branch is initialized with the pretrained STC-
Connector from VideoLLaMA2. As shown in Table 8,
pretraining consistently improves performance across tasks,
except for the Perception Test, highlighting the necessity
of pretraining object tokens—similar to standard visual to-
kens—for effective text alignment.

Table 8. Ablation on the Object-Centric Branch pretraining.

Object Pretrain MVBench Egoschema Perception VideoMME ActNet

% 51.2 43.5 50.5 46.8 44.3
! 52.5 51.3 49.7 47.6 46.3

A.3. Number of Object Tokens
We also study the impact of different upper limits for the
number of object tokens Noi in Table 9.

A.4. Comparison with Video Encoders
Video encoders share a similar function with our Object-
Centric Branch, as they not only capture temporal dynam-
ics but also excel at encoding finer details, leveraging emer-
gent objectness within videos and potentially introducing

Table 9. Different upper limit numbers of object tokens.

Max Noi MVBench Egoschema Perception VideoMME Avg.

16 43.7 41.1 44.7 45.3 43.7
32 43.9 40.9 45.8 45.2 44.0
64 44.2 44.5 46.3 46.1 45.3
80 44.0 40.2 45.4 45.3 43.7

implicit object modeling. Therefore, in Table 10, we com-
pare VideoOrion with baseline models in which the Object-
Centric Branch is replaced by two widely used video en-
coders: VideoMAE [63] and UMT-L [31]. The results
demonstrate that VideoOrion outperforms both VideoMAE
and UMT-L by more than 2% on average.

Table 10. Comparison with video-encoder based models.

Model MVBench Egoschema Perception VideoMME Avg.

VideoMAE 43.5 38.6 44.4 43.2 42.4
UMT-L 43.7 40.8 45.1 42.3 43.0
VideoOrion 44.2 44.5 46.3 46.1 45.3

B. Enhenced Temporal-Understanding.
The Object-Branch of VideoOrion takes in additional
frames to capture the essential object dynamic information
in the video. We hypothesize that this inclusion of extra
temporal information improves the temporal reasoning ca-
pabilities.

In Table 11, we compare VideoOrion and VideoOrion+
against the baseline models VideoLLaMA2 and VideoL-
LaMA2.1 on video QA tasks from TemporalBench[7], a
benchmark tailored to evaluate fine-grained temporal under-
standing capabilities. The results demonstrate that our mod-
els outperform the baselines, underscoring VideoOrion’s
superior ability to capture and utilize fine-grained temporal
details in videos.

Table 11. Results of zero-shot performance on TemporalBench.

Model Multi-Binary Binary
Accuracy (Acc.) Accuracy (Acc.)

VideoLLaMA2 15.9 57.4
VideoOrion 18.2 59.0

VideoLLaMA2.1 17.9 59.5
VideoOrion+ 20.3 61.8

C. More Examples of the Detect-Segment-
Track Pipeline

We show additional examples of the object mask lists ex-
tracted through the detect-segment-track pipeline in Fig-
ure 4. To povide a clearer illustration of the mask pool-
ing mechanism in our model, we resize the masks and map

them to the patch level. As can be seen in most instances,
the pipeline effectively identifies the salient objects present
in videos, ensuring that the resulting object tokens are en-
riched with clear and meaningful semantics.

D. More Qualitative Results

Additional qualitative examples of VideoOrion+,
VideoOrion-Ref and VideoOrion-Ref-FT+ are pre-
sented in Figure 5. These examples highlight our model’s
capabilities of capturing interaction details and object
dynamics, as well as its enhanced video-based referring
capabilities after being trained on this task.

video

masks

video

masks

video

masks

video

masks

Figure 4. Examples of the detect-segment-track pipeline.

Figure 5. Qualitative examples of VideoOrion+, VideoOrion-Ref
and VideoOrion-Ref-FT+.

E. Analysis of Failure Cases
E.1. Failures in Detect-Segment-Track Pipeline
One potential limitation is that inaccuracies in the pipeline
may hinder the model’s understanding and perception abil-

ities. However, the dual-branch design of VideoOrion helps
alleviate this issue by leveraging context tokens as comple-
mentary. As shown in Figure 6, even when the pipeline fails
to detect and track the box in a person’s hand, VideoOrion
can still correctly infer the action based on contextual cues.

Q: What will

the person do

next?

VideoOrion+:

Put down the box.

Figure 6. Failure of the detect-segment-track pipeline.

E.2. Failures on Object Attention
Although VideoOrion successfully detects and tracks criti-
cal objects, it can still occasionally make errors. However,
its explicit and disentangled object representation allows for
better diagnosis and interpretation of these mistakes.

We analyze a case presented in Figure 7, where a green
cylinder in the bottom right corner moves, yet VideoOrion
incorrectly predicts that no cylinders are moving. By visu-
alizing the attention weights assigned to the object tokens,
we observe that the model assigns relatively low attention to
the moving cylinder (O5) while focusing more on the static
grey cylinder (O4). This likely explains the misclassifica-
tion in this instance. This case highlights that while object
tokens generally enhance VideoOrion’s understanding, mis-
placed attention on irrelevant objects can still lead to errors.

Q: Are there any moving cylinders

when the video begins?

Options: (A) not sure (B) no (C) yes

VideoOrion: B

Figure 7. Failure case due to the object attention.

F. Additional Computation Time Induced
As noted in Limitations, our method will increase com-
putation cost due to the additional Detect-Segment-Track
pipeline. We report an average computation time for 50
samples in Table 12 and observe a 38.5% increase. We be-
lieve this computation cost is acceptable in trade-off of the
benefits brought by VideoOrion. We also hypothesize that
with computation optimization and faster tracking model,
these extra time will be negliable in the future.

G. Scaling Effect Observed in VideoOrion
In this section, we demonstrate how our model can bene-
fit from data scaling. To evaluate this, we randomly divide
the instruction tuning dataset from VideoChat2 into three
parts, and we begin by fine-tuning VideoOrion using only
the Video-LLaVA dataset. Subsequently, we progressively
incorporate each of the three parts from VideoChat2 into
the training data and demonstrate how performance evolve
with scaling of the dataset. As per Figure 8, the perfor-
mances of VideoOrion consistently improve across all four
benchmarks, i.e. MVBench, Perception-Test, Video-MME
and ActivityNet-QA, with more training data. These re-
sults demonstrate VideoOrion’s capacity to effectively har-
ness larger datasets, enabling consistent improvements in
performance.

725K 1.05M 1.4M 2M
data

44

46

48

50

52

54

56

58

A
cc

ur
ac

y
(%

)

+7.93

+10.83

+13.70

MVBench

725K 1.05M 1.4M 2M
data

46

47

48

49

50

51

52

53

A
cc

ur
ac

y
(%

)

+4.63

+5.78

+7.76

Perception-Test

725K 1.05M 1.4M 2M
data

46.00

46.25

46.50

46.75

47.00

47.25

47.50

47.75

48.00

A
cc

ur
ac

y
(%

)

+0.60

+0.90

+2.00

Video-MME

725K 1.05M 1.4M 2M
data

43

44

45

46

47

48

49

50

A
cc

ur
ac

y
(%

)
+3.92

+6.15

+7.37

ActivityNet-QA

725K 1.05M 1.4M 2M
data

45

46

47

48

49

50

51

52

A
cc

ur
ac

y
(%

)

+4.27

+5.91

+7.71

Average

Figure 8. An illustration showcasting how VideoOrion benefits
from increased training data.

H. Hyperparameters
We report in Table 13 the detailed hyperparameters for
VideoOrion and VideoOrion+ used in different training
stages.

Table 12. Additional computation time for VideoOrion.

no pipeline with pipeline extra (%)

Time/sample 8.27s 11.46s +38.5%

Table 13. Training hyperparameters for VideoOrion and VideoOrion+.

Config VideoOrion VideoOrion+
Stage1 Stage2 Stage3 Stage1 Stage2 Stage3

Vision Encoder CLIP(ViT-L/14) SigLIP(so400m-patch14-384)
LLM Backbone Mistral-Instruct-7B Qwen2-7B
Frame Number 8 8 8 16 16 16
Input Resolution 336 336 336 384 384 384
Learning Rate 1e− 3 1e− 4 5e− 6 1e− 3 1e− 4 5e− 6
Weight Decay 0 0 0 0 0 0
Warmup Ratio 0.03 0.03 0.03 0.03 0.03 0.03
Learning Rate Schedule cosine cosine cosine cosine cosine cosine
Numerical Precision bfloat16 bfloat16 bfloat16 bfloat16 bfloat16 bfloat16
Batch Size 256 256 128 256 256 128
LLM Sequence Length 2048 2048 2048 2048 2048 2048
Epoch Number 1 1 1 1 1 1
Max Object Token Number - - 64 - - 64

