A. Appendix
A.1. Data Details

To collect our large-scale dataset of image pairs, we utilize
DL3DVI10K [30] and ScanNet+-+ [65] benchmarks. For
DL3DVIOK, we select k € [6,36] equally spaced views
as the initial sparse training set. We use the 960P resolu-
tion images and undistort them before reconstruction. We
filter sequences based on scale factor plausibility, i.e. we re-
move sequences with very large or small scale factors. This
makes our calibration pipeline robust to inaccuracies in ini-
tial camera parameters or depth estimates. We store the re-
constructions in a compressed format following [38]. For
ScanNet++-, we first use farthest point sampling to deter-
mine a small number of keyframes and subsequently select
25% - 50% of the remaining training set closest to these
keyframes. This ensures good spatial coverage while also
promoting target views far from the initial training views,
even in a dense view setting. Additionally, we use the out-
of-distribution test views of the training sequences. We
undistort the images and resize them to 640 x 960. The
resulting dataset covers a wide variety of input rendering
quality for training, with initial PSNR values ranging from
5 to more than 30.

A.2. Method Details

Camera selection. For unordered view sets, we exploit the
fact that our reconstructions are metric scale, which allows
us to choose a reasonable range for the radius of the sphere
that the candidate poses lie on. In practice, we found a range
of [0.2, 0.5] to work well, while for the orientation we use a
random perturbation within [0, 30] degrees in yaw and pitch.

Initial reconstruction. Note that before running point tri-
angulation, we check if there are sufficient reliable feature
tracks inferred from the MASt3R matches, and if there are
not enough feature tracks, we resort to global pointcloud
alignment [28] to ensure sufficiently dense 3D geometry es-
timates. This is usually only the case for very sparse input
view scenarios, i.e. 9 input views or less.

Training details. For training our flow model, we found
it important to choose the right camera selection strategy
to ensure both sufficient viewpoint variability and high co-
visibility between input views. Therefore, given a pool of
target view candidates based on spatial similarity, we ran-
domly sample the pool of candidates. Then, we select k
reference views based on a k-means clustering of the target
views in a 6D space consisting of position and look-at di-
rection. Given the k clusters, we can choose the reference
view closest to each cluster center. For timestep scheduling
during training, we follow [15] and sample ¢ from a logit
normal distribution with constant shift. Furthermore, we
sample ¢ independently for each target frame [8], which we

t y@ ¢ z
|

M|I_p rearrange(bnsc->(bn)sc)
1

T
LayerNorm, Scale, Shift
Multi-Head Self-Attention

1
Scale
1

+

+
1

— Linear
1

rearrange((bn)sc->b (ns)c)
Layer:Norm
Multi-Head Self-Attention
Zero I:_inear

rearrange(b (ns)c->(bn)sc)

1
+
I
I

LayerNorm, Scale, Shift
1
Feed-Forward

1
Scale
|

+
1

rearrange((bn)sc->bnsc)

Figure 5. Illustration of our multi-view DiT block. Here, we
denote ray map embeddings as c.

Num. views GPUmem. (GB) PSNR{1 SSIM1 LPIPS |
72 423 24.15 0.808 0.180
12 17.0 24.29 0.801 0.175

Table 7. Memory consumption vs. performance across input
view counts. We show our model is effective both at high and low
number of views on DL3DV 140 at 512px width (cf. Tab. 5).

found to speed up convergence.

Architecture details. The overall architecture of our model
follows [15]. To compress the input images into latents, we
use a VAE [48] with latent dimension of 16. The latents
are patchified with a patch size of 2 and fed to our latent
flow matching model, which consists of 24 DiT blocks [42].
Each block has 24 attention heads with dimension 64, and
the feedforward network has the same hidden dimension of
1536. We show an illustration of our multi-view DiT block
architecture Fig. 5. As mentioned in Sec. 3.3, we keep the
first self-attention layer, the normalization layers, and the
feed-foward layer equivalent to [15], and insert a multi-view
attention layer after the first attention layer. This multi-
view attention is concluded with a zero linear layer to keep
the initialization intact. As mentioned in Sec. 3.2, for each
source input view ¢, we condition the model on its camera

r Re-init 12-view 24-view
tet " | PSNRT SSIMT LPIPS]| PSNRtT SSIM1 LPIPS|
1 - - 22.18 0.760 0.314 24.88 0.831 0.243
2 v - 22.35 0.763 0.285 25.10 0.835 0.212
3 v v 22.43 0.766 0.280 25.13 0.836 0.212

Table 8. Refined reconstruction G ablation breakdown. We report the scores on both DL3DV [30] view splits. Incorporating generated
views in pointcloud initialization (Re-init.) benefits view synthesis, while the improvement is more pronounced in the 12 view setting.

3-view 6-view 9-view
Method PSNR1T SSIMt LPIPS| PSNRT SSIM{t LPIPS| PSNRT SSIMT LPIPS |
ZipNeRF [3] 12.77 0.271 0.705 13.61 0.284 0.663 14.30 0.312 0.633
ZeroNVS [49] 14.44 0.316 0.680 15.51 0.337 0.663 15.99 0.350 0.655
ReconFusion [61] 15.50 0.358 0.585 16.93 0.401 0.544 18.19 0.432 0.511
CAT3D [19] 16.62 0.377 0.515 17.72 0.425 0.482 18.67 0.460 0.460
FlowR 14.46 0.347 0.587 16.18 0.409 0.520 17.53 0.456 0.467
FlowR (Initial) 12.77 0.243 0.592 14.40 0.320 0.532 15.67 0.379 0.491

Table 9. Few-view 3D reconstruction on Mip-NeRF 360 [2]. We follow the experimental setting of [61].

pose P; and intrinsics K, i.e. a pixel p’ of image 1 is rep-
resented as aray r = (o x d,d) witho = RJ-T(ti —t,) and
d = R/R;K; 'p’ where j is the reference view defining
common coordinate frame.

Inference details. When the number of reference views
we can fit into a single forward pass is limited, we apply
the same reference view selection strategy as in training.
For target view selection, we use the method described in
Sec. 3.3 and use B-spline basis functions of degree 2. When
inferring our model, we use 20 timesteps in the procedure
described in Sec. 2.2, specifically:

Zepar = 2 + Atvg(ze,y, 1), 9

where the step size At is chosen empirically as a monoton-
ically decreasing function of ¢ [15].

Runtime and memory analysis. As mentioned in Sec. 3.1,
our initial reconstruction takes an average of 6.5 minutes
for pointcloud initialization (6 minutes) and initial 3DGS
training (30 seconds). Our multi-view flow model takes ap-
proximately 1.5 minutes to generate 200 additional images,
processing 45 views at 540 x 960 resolution (91K tokens)
on one H100 GPU at each forward pass. The final recon-
struction training takes on average 42.4 minutes, as we use
a longer, 30k step schedule and an additional LPIPS loss
for the target views. In Tab. 7, we report the memory us-
age of our model and show that it can run both on high-end
and memory-constrained consumer grade GPUs by adjust-
ing the number of input views that are processed in a single
forward pass. Our model reaches comparable performance
on our DL3DV140 benchmark with 72 and 12 views, re-
spectively.

Limitations. While FlowR makes a significant step towards
high-quality, photo-realistic 3D reconstructions from non-
exhaustive captures, there remain meaningful directions for

future work. For instance, our method relies on heuristics to
select the camera views that are used to refine the 3D recon-
struction results. In this regard, incorporating uncertainty
quantification [20, 24] and active view selection [40] could
improve results. Additionally, because our method aims to
map incorrect renderings to ground-truth images, its perfor-
mance depends on the initial 3D reconstruction. In partic-
ular, if there are large areas entirely unseen in the source
views, our model will not hallucinate new content. Incor-
porating a suitable prior for such cases opens up a promis-
ing avenue for future research. Finally, we focus on static
scenes, as 3DGS exhibits major artifacts with dynamic ob-
jects. Hence, another meaningful direction for future work
is to extend our method to dynamic scenes using a dynamic
3DGS method, which requires adapting the training data to
reflect the presence of dynamic objects in both the source
and target distributions.

A.3. Additional Experiments

Evaluation details. We use LPIPS with VGG-16 fea-
tures unless otherwise specified in the benchmark, i.e. we
use VGG-16 for all experiments except for the Nerfbusters
benchmark which uses AlexNet. Note that for Nerfbusters
we resort to the test trajectory for target view selection since
the test views are entirely disconnected from the initial re-
construction and as such it is not possible to effectively re-
fine the reconstructed scene by interpolating along the train-
ing trajectory or by sampling poses around it. Finally, we
optionally apply naive opacity thresholding, i.e. we define a
single minimum opacity value applied to all rendered views
to achieve a comparable coverage to our baselines. The in-
tuition behind this is that high opacity along a pixel ray usu-
ally correlates with well-defined scene geometry.

Comparison to closed-source methods. In Tab. 9, we
compare with closed-source methods such as ReconFu-

sion [61] and CAT3D [19] using their provided data splits in
MipNeRF360 [2]. For a fair comparison, we choose a simi-
lar camera selection strategy as CAT3D, where we generate
an elliptic trajectory on a hemisphere around the common
look-at point of the initial cameras. We note that the evalu-
ation setting of [61] is distinct from ours since the training
and evaluation splits are chosen so that there is a large frac-
tion of the scene in the test views that was not observed in
the training views. As such, an evaluation with view synthe-
sis metrics is only approximate, as there are many plausible
3D scenes for a set of partial observations. We show that
our method, despite not being tailored for scene extrapola-
tion as mentioned in Appendix A.2, performs competitively
to prior works. We further observe that the gap between
our method and the state-of-the-art approach narrows when
increasing the number of input views, where our method
is almost on-par with CAT3D [19] in terms of SSIM and
LPIPS in the 9-view setting.

Refined reconstruction ablation breakdown. As men-
tioned in Sec. 4.2, we observed that the benefit of incor-
porating generated views into the pointcloud reconstruction
is more pronounced in the 12-view setting, as can be seen
in Tab. 8 where we provide a breakdown of the two splits.
We attribute this to the fact that with an increasing number
of co-visible views, there are enough reliable matches to tri-
angulate a good initialization from the source input images
and adding more views therefore ceases to improve results.

	Introduction
	Preliminaries
	3D Gaussian Splatting
	Flow Matching

	Method
	Robust 3D Reconstruction
	Flowing from Sparse to Dense Reconstructions
	Improving the 3D Reconstruction

	Experiments
	Comparison to State-of-the-Art
	Ablation Studies

	Related Work
	Conclusion
	Appendix
	Data Details
	Method Details
	Additional Experiments

