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Supplementary Material

A. Further Implementation Details

In this section, we provide additional details on the training
regimen of our method.

Parameters. We train the model on a single NVIDIA
H100 GPU for 150k iterations using the AdamW [6] opti-
mizer with weight decay of 0.05 and a Cosine Annealing
schedule [5] that decays the learning rate from 1e − 4 to
1e− 7. As training and inference-specific hyperparameters,
we choose κ = 1

0.07 , t1 = 0.5, and t2 = 0.7. The adapters
are included in each transformer block of the DINOv2 [7]
model with a low-rank dimensionality of 128.

Training Data. To improve generalization, we use a
similar data augmentation strategy during training as [1].
In each training iteration, we use a batch size of 10 images
which are stacked into dynamic batches according to the
present objects.

Annotation Generation. We use PyTorch3D [8] to ras-
terize the object prototypes into the annotation set. For
each object, we render the given pose individually and then
extract the per-pixel annotations. To account for objects
occluding each other (which happens frequently for the
category-level feature map) we mask out pixels where more
than one object is visible by setting the visibility to 0. Alter-
natively, one could also opt for supervising with the closest
object. However, we found that this results in the model to
miss small, or partially visible objects more frequently.

B. Architectural choices

We show an ablation on the core design choices of our
method in Tab. 1.

Adapter. The PEFT strategy to introduce dataset- and
task-specific information into the pre-trained feature extrac-
tor massively benefits our method. Only by modifying the
feedforward part of the transformer blocks shows signifi-
cant performance improvements which is especially notice-
able for rotation accuracy.

Foreground Modeling. Next, we evaluated the effect of
our foreground modeling via CrossAttention. Specifically,
we compare two variants. First, we evaluate the effect of
focusing the model onto the foreground region during train-
ing via a baseline that has all CrossAttention layers removed
and filters outliers during inference with confidence scores.
We found that the same threshold t2 = 0.7 we used for
the full model is not ideal in this case and a more robust
segmentation is obtained with t2 = 0.8. This naive base-
line achieves good results, indicating that our method can

identify vertices with high likelihood. Next, we use our full
model but ignore the provided mask during inference by set-
ting t1 = 0. This variant consistently outperforms the pre-
vious, indicating that focusing the model on the foreground
region explicitly during training leads to better representa-
tion learning. However, utilizing the foreground mask still
provides consistent improvements across all metrics, indi-
cating its importance for correspondence estimation.

Pose refinement. Finally, we ablate over the compo-
nents in or 9D pose refinement stage that utilizes the fea-
tures that follow the instance-level prototype geometries.
We show that returning the poses obtained from ProgX (i.e.
6D poses) leads to consistently worse performance. Even
an instance level refinement using the category-level corre-
spondences N̄ 2D

3D leads to performance improvements (see
row ”w refinement”). However, to obtain strong results for
the tightest bounding box threshold NIoU75 the size opti-
mization using the instance-level correspondences N 2D

3D is
required (see row ”w size estimation”). Best performance,
however, is obtained when refining the deformed 2D/3D
correspondences, leading to our full pipeline.

C. Inference Speed

We compare the inference speed of our method with the
two-stage baselines in Fig. 1. In contrast to baselines, our
method requires only a single forward pass. Two-stage
methods require one forward pass of the detection model
and one call for each detected object. Our method, on the
other hand, is more reliant on the choice of output resolu-
tion and found correspondences. With a more aggressive
outlier rejection or subsampling of correspondences infer-
ence speed can be greatly improved with only minor loss in
accuracy. In this work, however, we did not optimize for
inference speed and consider speed-up strategies as future
work.
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Figure 1. Average inference runtime our method and the baselines
LaPose and DMSR. Runtime of our method depends on the found
correspondences instead of present instances.



Method NIoU25 NIoU50 NIoU75 5◦0.2d 5◦0.5d 10◦0.2d 10◦0.5d 0.2d 0.5d 5◦ 10◦

Ours 75.2 53.7 19.2 25.1 31.8 43.7 66.1 53.5 83.7 32.1 68.8
w/o adapter -16.4 - 21.0 -15.9 -19.7 -22.1 -25.8 -31.1 -21.6 -8.7 - 21.8 -30.8

w/o CA - t1 = 0, t2 = 0.7 - 3.8 - 9.4 - 4.8 - 7.7 - 4.0 - 7.3 - 4.5 - 8.7 - 0.1 - 3.4 - 3.8
w/o CA - t1 = 0, t2 =opt. + 0.8 - 4.9 - 2.6 - 5.7 - 1.9 - 5.6 - 2.9 - 6.3 - 0.3 - 1.7 - 2.9
w CA - t1 = 0, t2 = 0.7 - 1.4 - 4.9 - 3.0 - 4.2 - 1.9 - 4.5 - 2.6 - 5.4 + 0.2 - 1.8 - 2.1
w CA - t1 = 0, t2 =opt. + 0.6 - 0.9 - 0.7 - 0.9 - 0.3 - 1.9 - 1.2 - 1.7 - 0.2 - 0.3 - 1.2

w/o refinement + w/o size - 0.7 - 2.7 - 3.9 - 2.1 - 2.1 - 2.4 - 3.9 - 2.1 - 1.0 - 1.8 - 3.5
w refinement - 0.3 - 2.4 - 2.8 - 1.3 - 1.1 - 1.9 - 2.7 - 1.7 - 0.8 - 0.8 - 2.2

w size estimation - 1.0 - 2.2 + 0.1 - 2.4 - 2.4 - 2.5 - 3.9 - 2.2 - 0.9 - 2.2 - 3.6

Table 1. Ablation over the key design choices in Φ. The adapters are crucial for precise pose estimation and their removal leads to massive
performance drops. In the second block, we evaluate without using the foreground mask obtained from the CrossAttention layers and
solely from confidence values. ”w/o CA” was trained without any CrossAttention layers, with the rest of the architecture being identical.
Confidence measures alone lead to reasonable performance, especially with the optimal threshold parameter (t2 = 0.8). However, it is still
consistently worse than the network trained with CrossAttention (”w CA”), even without using the mask during inference when setting
t1 = 0. In the third block, we ablate over the choices in the instance-level 9D pose refinement part of our pipeline. ”w/o refinement +
w/o size” refers to directly outputting the poses after ProgX, yielding consistently worse results. ”w refinement” refers to the instance level
pose refinement given the category-level correspondences, which gives a marginal improvement across all metrics. ”w size estimation”
includes the size optimization from the instance-level correspondences and shows that this is crucial for good performance on the tight
NIoU75 metric.

D. Pose Estimation for Overlapping Objects

REAL275 [9] does not contain many overlapping objects
of the same category. To showcase that our method can
deal with intra-category overlaps we captured in-the-wild
images with a smartphone and approximated its intrinsic
matrix. We show the predictions of our method in Fig. 2.

Figure 2. Detections and poses from our model with same-
category occlusions on self-captured images.

E. Additional Quantitative Results on Robust-
ness Study

In Tab. 2, we show the pose estimation accuracy under
scale-agnostic metrics averaged over all corruption types.
The corrupted images are generated using the method pro-
posed in [3] and using their public code. We consider four
types of image degradations, encompassing a total of eight
corruption types: noise (speckle noise, Gaussian noise),
blur (Gaussian blur, defocus blur), digital artifacts (JPEG
compression, elastic transformation), and weather effects
(frost, fog). The corruption strength follows the default set-
ting, varying in severity per image basis. For a fair compar-
ison, we run each method on the same set of images.

We report the mean scale-agnostic 3D Intersection over
Union (NIoU), rotation, and translation metrics for all meth-

ods. Additionally, we show results for each corruption type
at ROI level in Tab. 4 and at image level in Tab. 3.

F. Qualitative Results on Corrupted Images

Fig. 3 presents qualitative examples of object detection and
pose estimation on the corrupted REAL275 dataset. We can
observe that image degradations negatively affect the detec-
tion and in turn, the final pose estimation accuracy. For in-
stance, when applying elastic transformations the reduced
detector accuracy causes the laptop to be missed entirely
and introduces redundant detections of the camera. This
shows that for degraded images the detection model is a per-
formance bottleneck in current two-stage approaches. In the
single-stage approach, we benefit from significantly more
robust detection and pose estimation quality.

G. Qualitative Results of Dense Matching

In Fig. 4, we present qualitative results of dense 2D-3D cor-
respondence matching. We render all NOCS-maps with the
geometry of our object prototypes using PyTorch3D [8]. To
be consistent with our main inference, we remove corre-
spondences with a confidence score below t2 = 0.7. To
address object overlap, we prioritize rendering the object
closer to the camera. We observe that our method generates
less confident correspondences near object edges, likely due
to the ambiguity of these regions during optimization. Over-
all, our method produces high-quality correspondences us-
ing a simple nearest-neighbor matching approach, indicat-
ing that the contrastive training approach produces descrip-
tive features.



Source Method NIoU25 NIoU50 NIoU75 5◦0.2d 5◦0.5d 10◦0.2d 10◦0.5d 0.2d 0.5d 5◦ 10◦
N

on
e

MSOS [4] 36.9 9.7 0.7 - - 3.3 15.3 10.6 50.8 - 17.0
OLD-Net [2] 35.4 11.4 0.4 0.9 3.0 5.0 16.0 12.4 46.2 4.2 20.9
DMSR [10] 57.2 38.4 9.5 15.1 23.7 25.6 45.2 35.0 67.3 27.4 52.0
LaPose [11] 70.7 47.9 15.8 15.7 21.3 37.4 57.4 46.9 78.8 23.4 60.7

Ours 71.6 50.5 18.3 21.6 28.6 41.9 61.6 51.0 80.9 29.1 64.1

R
O

I OLD-Net[2] 30.3 8.6 0.2 0.5 1.9 3.6 12.2 10.4 41.2 3.2 17.1
DMSR[10] 55.3 35.6 8.2 12.4 19.4 23.5 40.5 33.4 65.5 22.6 46.0
LaPose[11] 64.1 39.8 12.9 11.2 16.2 27.9 47.9 38.3 73.9 18.4 52.0

Im
ag

e

OLD-Net[2] 25.5 7.0 0.2 0.4 1.7 2.7 9.4 8.1 34.0 3.2 15.7
DMSR[10] 49.3 32.9 7.4 11.4 17.1 21.4 35.2 30.4 57.1 20.1 40.3
LaPose[11] 54.5 36.1 12.2 11.1 15.2 26.4 41.5 34.9 62.1 17.3 45.0

Ours 63.8 43.4 14.3 17.9 24.7 35.2 53.7 44.5 73.2 25.2 56.0

Table 2. Ablation study of robustness under image noises. We report the performance of all methods on clean data (top), as well as ROI
corruptions for baselines (middle), and image-level corruptions (bottom). Note, that performance of our method on clean data is different
due to the changed training regiment to make this comparison fair.

Method Noise NIoU25 NIoU50 NIoU75 5◦0.2d 5◦0.5d 10◦0.2d 10◦0.5d 0.2d 0.5d 5◦ 10◦

LaPose

Speckle Noise

56.7 35.8 13.3 8.6 11.7 25.1 39.8 34.9 64.9 13.9 44.2
DMSR 48.8 31.1 6.4 8.9 15.2 17.9 33.4 27.9 55.7 19.4 40.3
Old-Net 23.2 6.7 0.2 0.2 1.3 2.6 0.3 7.7 32.1 3.2 17.0

Ours 61.8 40.3 12.6 15.0 22.6 31.1 50.6 40.8 71.6 23.2 53.5
LaPose

Gaussian Blur

58.2 41.9 17.3 13.4 18.0 31.1 44.1 40.1 64.0 20.2 47.6
DMSR 54.3 40.4 10.3 14.1 18.5 27.7 39.4 36.6 60.3 21.2 43.5
Old-Net 30.7 7.4 0.3 0.4 2.6 3.3 13.2 9.7 39.1 4.1 18.5

Ours 69.9 48.9 17.4 19.6 25.9 39.7 59.3 49.5 78.9 26.2 61.3
LaPose

Gaussian Noise

52.2 32.5 11.9 8.3 11.3 23.9 36.4 31.9 60.8 13.0 40.0
DMSR 45.2 30.1 7.2 10.6 17.1 19.3 34.0 28.0 52.9 19.3 39.2
Old-Net 24.8 8.7 0.2 0.6 2.2 3.3 11.4 9.0 32.3 4.1 17.2

Ours 56.9 37.8 12.2 14.9 21.0 30.4 47.1 38.7 65.4 21.7 49.7
LaPose

Defocus Blur

54.1 39.3 11.4 12.2 16.1 29.0 42.1 36.9 60.2 17.4 44.3
DMSR 53.2 37.9 8.8 10.8 15.4 24.5 37.2 36 61.8 17.4 41.1
Old-Net 22.6 5.9 0.1 0.2 1.3 2.1 8.8 7.6 30.0 3.1 15.1

Ours 63.2 42.3 14.7 17.8 24.6 34.6 53.5 43.1 73.0 24.9 55.9
LaPose

JPEG Compression

57.3 37.6 9.9 11.1 16.6 27.1 45.1 36.1 66.9 19.3 49.2
DMSR 51.3 32.4 8.1 11.3 14.8 21.5 32.3 31.7 60.3 16.5 34.9
Old-Net 35.9 12.4 0.3 0.8 2.7 5.0 15.8 13.5 44.8 4.1 20.1

Ours 70.4 50.7 18.5 22.1 29.2 41.4 59.5 51.6 80.2 29.7 62.4
LaPose

Elastic Transform

58.6 36.9 10.5 12.0 17.3 27.7 47.1 35.2 66.4 19.5 50.8
DMSR 49.0 30.9 6.4 11.2 17.4 19.5 35.0 27.9 57.5 20.5 40.8
Old-Net 25.3 5.6 0.2 0.4 2.6 2.2 11.9 6.2 34.8 4.3 17.6

Ours 68.0 45.4 15.3 17.8 24.7 36.9 57.9 45.9 78.5 25.1 60.5
LaPose

Frost

49.4 32.3 11.5 11.6 15.1 23.7 38.5 31.9 56.8 17.7 42.0
DMSR 39.5 25.1 4.8 10.1 16.9 16.4 29.0 23.4 46.6 20.0 34.7
Old-Net 23.8 6.6 0.2 0.2 0.9 2.2 8.9 7.4 31.6 1.6 12.8

Ours 60.9 41.1 12.8 18.4 25.4 33.9 51.2 43.8 70.7 25.7 53.0
LaPose

Fog

66.9 46.5 17.2 15.2 19.9 35.0 53.9 46.0 75.3 22.0 57.0
DMSR 53.1 35.2 7.5 14.0 21.7 24.1 41.1 32.1 61.7 26.3 47.9
Old-Net 17.8 2.4 0.1 0.1 0.3 1.1 4.9 4.0 27.6 0.7 7.3

Ours 58.9 40.6 11.1 17.4 24.4 33.4 50.2 42.6 67.5 24.9 51.8

Table 3. We show per corruption accuracy of all methods. Corruptions are applied to the full image, affecting both detection and pose
estimation. Our method outperforms the baselines on a majority of the corruption types.



Method Noise NIoU25 NIoU50 NIoU75 5◦0.2d 5◦0.5d 10◦0.2d 10◦0.5d 0.2d 0.5d 5◦ 10◦

LaPose

Speckle Noise

62.2 36.5 12.6 7.0 10.1 23.7 40.2 34.5 71.6 11.9 45.3
DMSR 54.9 35.4 8.9 10.9 18.0 22.9 40.5 32.8 65.4 21.1 46.0
Old-Net 30.9 9.1 0.2 0.5 2.0 4.1 13.4 10.6 41.6 3.6 19.1
LaPose

Gaussian Noise

62.6 34.3 12.0 7.6 10.8 22.5 37.2 33.8 72.4 12.3 41.5
DMSR 55.3 34.3 7.6 11.8 19.0 22.3 39.5 32.0 65.3 21.4 44.9
Old-Net 33.3 10.4 0.2 0.7 2.2 4.6 13.6 11.6 43.5 3.5 19.0
LaPose

Gaussian Blur

61.8 41.5 15.3 13.3 19.0 31.4 49.9 40.5 71.9 22.1 54.5
DMSR 57.9 39.8 10.1 14.4 22.2 26.7 45.1 37.5 67.7 26.1 51.4
Old-Net 30.6 7.6 0.3 0.5 2.9 3.5 13.7 9.9 41.5 4.6 18.9
LaPose

Defocus Blur

60.8 38.8 11.0 11.3 16.7 27.3 48.0 36.1 71.3 18.8 51.8
DMSR 56.3 37.9 8.7 10.6 15.7 24.0 38.9 35.8 66.2 18.5 44.0
Old-Net 25.9 6.2 0.1 0.2 1.3 1.9 8.6 9.0 36.6 3.4 15.7
LaPose

JPEG Compression

58.3 34.2 8.9 9.9 16.3 24.6 46.3 33.3 70.5 19.1 51.3
DMSR 50.6 29.9 6.4 10.6 14.9 20.4 33.5 29.1 61.9 16.7 36.9
Old-Net 35.7 11.5 0.4 0.9 2.9 5.0 15.8 12.9 46.5 4.3 20.4
LaPose

Elastic Transform

69.1 44.5 13.4 13.6 18.9 33.8 54.8 42.7 77.8 21.2 58.2
DMSR 56.8 37.6 8.7 13.4 20.2 25.0 42.1 35.0 66.5 23.3 48.2
Old-Net 33.2 9.5 0.3 0.7 2.6 4.1 14.4 11.1 44.2 3.8 19.5
LaPose

Frost

68.0 41.6 13.4 11.8 16.8 23.3 49.7 40.0 76.9 18.7 52.9
DMSR 55.6 35.3 8.0 13.3 21.8 23.5 40.6 33.5 66.2 24.9 45.6
Old-Net 35.6 12.0 0.3 0.4 1.2 4.8 13.1 14.0 47.6 1.9 17.0
LaPose

Fog

70.3 47.1 16.2 15.3 20.9 36.2 57.4 45.8 78.8 23.1 60.4
DMSR 55.0 34.6 7.5 14.2 23.7 23.1 43.8 31.1 65.1 28.6 50.9
Old-Net 17.3 2.3 0.1 0.1 0.3 1.1 4.8 3.9 27.7 0.6 7.3

Table 4. Ablation study of robustness with corrupted ROIs.

H. Per Category Results
Fig. 5 shows category-level pose estimation results using
our method and each baseline which has public code [2, 10,
11]. Notably, our approach consistently improves the mean
performance. Furthermore, our method outperforms others
in the challenging non-symmetric camera and laptop cate-
gories. This result highlights the effectiveness of our object
representation and the single-stage modeling strategy.
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Figure 3. Qualitative comparison on Corrupted NOCS-REAL275[9]. We compare our model with all baselines (first to third columns) and
with ground truth (last column) across 8 types of corruption.
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Figure 4. Visualization of the our dense matching results. We estimate 2D-3D correspondences between image features and our object
prototypes with mean scales and instance-level scales. We remove low noisy correspondences using our foreground modeling strategy and
confidence scores. Our method produces reliable and mostly noise-free correspondences in object regions.

Ji. Lapose: Laplacian mixture shape modeling for rgb-based
category-level object pose estimation. In European Confer-
ence on Computer Vision, pages 467–484. Springer, 2024. 3,
4, 7
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Figure 5. We show mean Average Precision (mAP) on REAL275[9] using scale-agnostic metrics. We compare our model with all baselines
that have public code. Noticeably, our method has significantly increased rotation accuracy on the challenging non-symmetric categories
camera and laptop.
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